Deep Learning-Based Cone Angle Estimation Using Spray Sequence Images

被引:1
|
作者
Huzjan, Fran [1 ]
Juric, Filip [2 ]
Vujanovic, Milan [2 ]
Loncaric, Sven [1 ]
机构
[1] Univ Zagreb, Fac Elect Engn & Comp, Zagreb, Croatia
[2] Univ Zagreb, Fac Mech Engn & Naval Architecture, Zagreb, Croatia
关键词
diesel spray; cone angle; neural networks; regression; time sequence; SEGMENTATION;
D O I
10.1145/3589883.3589915
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Engine efficiency, combustion process, and gas emissions are greatly affected by spray strategies. Spray strategies are utilized in engines with internal combustion. Spray strategies are determined by parameters such as nozzle diameter, injection pressure, chamber pressure, cylinder type, and others. These parameters determine spray shape. Spray shape is established by three main spray macroscopic parameters which are cone angle, penetration length, and spray area. Spray cone angle, with other spray macroscopic parameters, is often used to describe the parameters of numerical simulations. In this paper, we propose two new methods for the estimation of spray cone angle which affects the air engulfing and mixing process. Spray images gathered during a single spray injection are highly correlated. To use this fact to our advantage we proposed two deep learning-based methods that use image sequence as input. StackNet is a regression neural network that stacks images and uses them as input. It also uses a feature extractor and a fully connected layer. CNN-LSTM is another regression neural network with a feature extractor, but it utilizes Long Short-Term Memory (LSTM) cells before a fully connected layer. Both of the methods were trained, validated, and tested on preprocessed sequence images. To achieve better generalization and more data diversity, data augmentation was used. Three state-of-the-art feature extractors were tested, VGG16, MobileNetV3, and EfficientNetB0. The proposed methods were compared with the baseline approach which uses a single image as an input. Experimental validation showed that StackNet with VGG as a feature extractor achieved the best result. The proposed method estimated cone angle with a mean absolute error of 0.505 degrees, which is more than two times more accurate than the best baseline approach.
引用
收藏
页码:208 / 213
页数:6
相关论文
共 50 条
  • [41] Deep Learning-Based Indoor Distance Estimation Scheme Using FMCW Radar
    Park, Kyung-Eun
    Lee, Jeong-Pyo
    Kim, Youngok
    INFORMATION, 2021, 12 (02) : 1 - 14
  • [42] Deep Learning-Based Time Delay Estimation Using Ground Penetrating Radar
    Lin, Feng
    Sun, Meng
    Mao, Shiyu
    Wang, Bin
    ELECTRONICS, 2023, 12 (09)
  • [43] Deep Learning-Based Automatic River Flow Estimation Using RADARSAT Imagery
    Ziadi, Samar
    Chokmani, Karem
    Chaabani, Chayma
    El Alem, Anas
    REMOTE SENSING, 2024, 16 (10)
  • [44] Deep learning-based DOA estimation using CRNN for underwater acoustic arrays
    Li, Xiaoqiang
    Chen, Jianfeng
    Bai, Jisheng
    Ayub, Muhammad Saad
    Zhang, Dongzhe
    Wang, Mou
    Yan, Qingli
    FRONTIERS IN MARINE SCIENCE, 2022, 9
  • [45] Multiple source localization using learning-based sparse estimation in deep ocean
    Liu, Yining
    Niu, Haiqiang
    Yang, Sisi
    Li, Zhenglin
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2021, 150 (05): : 3773 - 3786
  • [46] Deep Learning-Based Image Segmentation of Cone-Beam Computed Tomography Images for Oral Lesion Detection
    Wang, Xueling
    Meng, Xianmin
    Yan, Shu
    JOURNAL OF HEALTHCARE ENGINEERING, 2021, 2021
  • [47] Deep learning-based fully automatic segmentation of the maxillary sinus on cone-beam computed tomographic images
    Hanseung Choi
    Kug Jin Jeon
    Young Hyun Kim
    Eun-Gyu Ha
    Chena Lee
    Sang-Sun Han
    Scientific Reports, 12
  • [48] Deep Learning-Based Summertime Turbulence Intensity Estimation Using Satellite Observations
    Lee, Yoonjin
    Kim, Soo-Hyun
    Noh, Yoo-Jeong
    Kim, Jung-Hoon
    JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2023, 40 (11) : 1433 - 1448
  • [49] Machine Learning-based Robust Physical Layer Authentication Using Angle of Arrival Estimation
    Pham, Thuy M.
    Senigagliesi, Linda
    Baldi, Marco
    Fettweis, Gerhard P.
    Chorti, Arsenia
    IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 13 - 18
  • [50] Deep learning-based fully automatic segmentation of the maxillary sinus on cone-beam computed tomographic images
    Choi, Hanseung
    Jeon, Kug Jin
    Kim, Young Hyun
    Ha, Eun-Gyu
    Lee, Chena
    Han, Sang-Sun
    SCIENTIFIC REPORTS, 2022, 12 (01)