Deep Learning-Based Cone Angle Estimation Using Spray Sequence Images

被引:1
|
作者
Huzjan, Fran [1 ]
Juric, Filip [2 ]
Vujanovic, Milan [2 ]
Loncaric, Sven [1 ]
机构
[1] Univ Zagreb, Fac Elect Engn & Comp, Zagreb, Croatia
[2] Univ Zagreb, Fac Mech Engn & Naval Architecture, Zagreb, Croatia
关键词
diesel spray; cone angle; neural networks; regression; time sequence; SEGMENTATION;
D O I
10.1145/3589883.3589915
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Engine efficiency, combustion process, and gas emissions are greatly affected by spray strategies. Spray strategies are utilized in engines with internal combustion. Spray strategies are determined by parameters such as nozzle diameter, injection pressure, chamber pressure, cylinder type, and others. These parameters determine spray shape. Spray shape is established by three main spray macroscopic parameters which are cone angle, penetration length, and spray area. Spray cone angle, with other spray macroscopic parameters, is often used to describe the parameters of numerical simulations. In this paper, we propose two new methods for the estimation of spray cone angle which affects the air engulfing and mixing process. Spray images gathered during a single spray injection are highly correlated. To use this fact to our advantage we proposed two deep learning-based methods that use image sequence as input. StackNet is a regression neural network that stacks images and uses them as input. It also uses a feature extractor and a fully connected layer. CNN-LSTM is another regression neural network with a feature extractor, but it utilizes Long Short-Term Memory (LSTM) cells before a fully connected layer. Both of the methods were trained, validated, and tested on preprocessed sequence images. To achieve better generalization and more data diversity, data augmentation was used. Three state-of-the-art feature extractors were tested, VGG16, MobileNetV3, and EfficientNetB0. The proposed methods were compared with the baseline approach which uses a single image as an input. Experimental validation showed that StackNet with VGG as a feature extractor achieved the best result. The proposed method estimated cone angle with a mean absolute error of 0.505 degrees, which is more than two times more accurate than the best baseline approach.
引用
收藏
页码:208 / 213
页数:6
相关论文
共 50 条
  • [1] A Deep Learning-Based Regression Scheme for Angle Estimation in Image Dataset
    Rane, Tejal
    Bhatt, Abhishek
    RECENT TRENDS IN IMAGE PROCESSING AND PATTERN RECOGNITION, RTIP2R 2022, 2023, 1704 : 282 - 296
  • [2] Deep Learning-Based Hybrid Approach for Vehicle Roll Angle Estimation
    Cho, Kunhee
    Lee, Hyeongcheol
    IEEE ACCESS, 2024, 12 : 157165 - 157178
  • [3] Deep learning-based dose estimation in cone-beam computed tomography
    Kim, Jinwoo
    Kim, Ho Kyung
    Cho, Minkook
    MEDICAL IMAGING 2024: PHYSICS OF MEDICAL IMAGING, PT 1, 2024, 12925
  • [4] Deep Learning-based Image Analysis Method for Estimation of Macroscopic Spray Parameters
    Huzjan, Fran
    Juric, Filip
    Loncaric, Sven
    Vujanovic, Milan
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (13): : 9535 - 9548
  • [5] Deep Learning-based Image Analysis Method for Estimation of Macroscopic Spray Parameters
    Fran Huzjan
    Filip Jurić
    Sven Lončarić
    Milan Vujanović
    Neural Computing and Applications, 2023, 35 : 9535 - 9548
  • [6] Deep learning-based estimation of axial length using macular optical coherence tomography images
    Liu, Jing
    Li, Hui
    Zhou, You
    Zhang, Yue
    Song, Shuang
    Gu, Xiaoya
    Xu, Jingjing
    Yu, Xiaobing
    FRONTIERS IN MEDICINE, 2023, 10
  • [7] Automatic Refractive Error Estimation Using Deep Learning-Based Analysis of Red Reflex Images
    Linde, Glenn
    Chalakkal, Renoh
    Zhou, Lydia
    Huang, Joanna Lou
    O'Keeffe, Ben
    Shah, Dhaivat
    Davidson, Scott
    Hong, Sheng Chiong
    DIAGNOSTICS, 2023, 13 (17)
  • [8] Deep learning-based motion tracking using ultrasound images
    Dai, Xianjin
    Lei, Yang
    Roper, Justin
    Chen, Yue
    Bradley, Jeffrey D.
    Curran, Walter J.
    Liu, Tian
    Yang, Xiaofeng
    MEDICAL PHYSICS, 2021, 48 (12) : 7747 - 7756
  • [9] Deep Learning-Based SNR Estimation
    Zheng, Shilian
    Chen, Shurun
    Chen, Tao
    Yang, Zhuang
    Zhao, Zhijin
    Yang, Xiaoniu
    IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2024, 5 : 4778 - 4796
  • [10] Deep Learning-Based Channel Estimation
    Soltani, Mehran
    Pourahmadi, Vahid
    Mirzaei, Ali
    Sheikhzadeh, Hamid
    IEEE COMMUNICATIONS LETTERS, 2019, 23 (04) : 652 - 655