Low-Light Image Enhancement via Stage-Transformer-Guided Network

被引:21
|
作者
Jiang, Nanfeng [1 ]
Lin, Junhong [1 ]
Zhang, Ting [1 ]
Zheng, Haifeng [1 ]
Zhao, Tiesong [1 ,2 ]
机构
[1] Fuzhou Univ, Coll Phys & Informat Engn, Fujian Key Lab Intelligent Proc & Wireless Transmi, Fuzhou 350108, Peoples R China
[2] Peng Cheng Lab, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
Low-light image enhancement; multi-stage learning; degradation query;
D O I
10.1109/TCSVT.2023.3239511
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Images collected in low-light environments usually suffer from multiple, non-uniform distributed distortions, including local dark, dim light, backlit and so on. In this paper, we propose a Stage-Transformer-Guided Network (STGNet) that effectively handles region-specific distributions and enhance diverse low-light images. Specifically, our STGNet adopts a multi-stage way to progressively learn hierarchical features that benefit the robustness of our model. At each stage, we design an efficient transformer with horizontal and vertical attentions that jointly capture degradation distributions with different magnitudes and orientations. We also introduce learnable degradation queries to adaptively select task-specific features of degradations for enhancement. In addition, we design a histogram loss for enhancement and combine it with other loss functions, in order to exploit both global contrast and local details during network training. Benefiting from the above contributions, our STGNet achieves the state-of-the-art performances on both synthetic and real-world datasets.
引用
收藏
页码:3701 / 3712
页数:12
相关论文
共 50 条
  • [21] An illumination-guided dual attention vision transformer for low-light image enhancement
    Wen, Yanjie
    Xu, Ping
    Li, Zhihong
    Xu, Wangtu
    PATTERN RECOGNITION, 2025, 158
  • [22] Lightweight two-stage transformer for low-light image enhancement and object detection
    Kou, Kangkang
    Yin, Xiangchen
    Gao, Xin
    Nie, Fuhui
    Liu, Jing
    Zhang, Guoying
    DIGITAL SIGNAL PROCESSING, 2024, 150
  • [23] Low-light image enhancement via adaptive frequency decomposition network
    Xiwen Liang
    Xiaoyan Chen
    Keying Ren
    Xia Miao
    Zhihui Chen
    Yutao Jin
    Scientific Reports, 13
  • [24] Low-light image enhancement via adaptive frequency decomposition network
    Liang, Xiwen
    Chen, Xiaoyan
    Ren, Keying
    Miao, Xia
    Chen, Zhihui
    Jin, Yutao
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [25] Low-light image enhancement via multistage feature fusion network
    Tan, Mingming
    Fan, Jiayi
    Fan, Guodong
    Gan, Min
    JOURNAL OF ELECTRONIC IMAGING, 2022, 31 (06)
  • [26] Low-Light Image Enhancement via Progressive-Recursive Network
    Li, Jinjiang
    Feng, Xiaomei
    Hua, Zhen
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (11) : 4227 - 4240
  • [27] SGRNet: Semantic-guided Retinex network for low-light image enhancement
    Wei, Yun
    Qiu, Lei
    DIGITAL SIGNAL PROCESSING, 2025, 161
  • [28] Lightening Network for Low-Light Image Enhancement
    Wang, Li-Wen
    Liu, Zhi-Song
    Siu, Wan-Chi
    Lun, Daniel P. K.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 7984 - 7996
  • [29] Content-illumination coupling guided low-light image enhancement network
    Zhao, Ruini
    Xie, Meilin
    Feng, Xubin
    Su, Xiuqin
    Zhang, Huiming
    Yang, Wei
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [30] Task Decoupling Guided Low-Light Image Enhancement
    Niu Y.-Z.
    Chen M.-M.
    Li Y.-Z.
    Zhao T.-S.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2024, 52 (01): : 34 - 45