Predicting evolutionary outcomes through the probability of accessing sequence variants

被引:2
|
作者
Gunnarsson, P. Alexander [1 ,2 ,3 ]
Babu, M. Madan [1 ,2 ,3 ]
机构
[1] MRC Lab Mol Biol, Francis Crick Ave, Cambridge CB2 0QH, England
[2] St Jude Childrens Res Hosp, Dept Struct Biol, Memphis, TN 38105 USA
[3] St Jude Childrens Res Hosp, Ctr Excellence Data Driven Discovery, Memphis, TN 38105 USA
基金
英国医学研究理事会;
关键词
INFLUENZA-VIRUS; PEPTIDE MOTIFS; FITNESS; REPLICATION; MUTATION; PHOSPHORYLATION; ADAPTATION; DYNAMICS; BIASES;
D O I
10.1126/sciadv.ade2903
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Natural selection can only operate on available genetic variation. Thus, determining the probability of accessing different sequence variants from a starting sequence can help predict evolutionary trajectories and outcomes. We define the concept of "variant accessibility" as the probability that a set of genotypes encoding a particular protein function will arise through mutations before subject to natural selection. This probability is shaped by the mutational biases of nucleotides and the structure of the genetic code. Using the influenza A virus as a model, we discuss how a more accessible but less fit variant can emerge as an adaptation rather than a more fit variant. We describe a genotype-accessibility landscape, complementary to the genotype-fitness landscape, that informs the likelihood of a starting sequence reaching different parts of genotype space. The proposed framework lays the foundation for predicting the emergence of adaptive genotypes in evolving systems such as viruses and tumors.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Predicting Immunotherapy Outcomes in Glioblastoma Patients through Machine Learning
    Mestrallet, Guillaume
    CANCERS, 2024, 16 (02)
  • [32] Predicting Students' Graduation Outcomes through Support Vector Machines
    Pang, Yulei
    Judd, Nicolas
    O'Brien, Joseph
    Ben-Avie, Michael
    2017 IEEE FRONTIERS IN EDUCATION CONFERENCE (FIE), 2017,
  • [33] SARS-CoV-2 protein structure and sequence mutations: Evolutionary analysis and effects on virus variants
    Lomoio, Ugo
    Puccio, Barbara
    Tradigo, Giuseppe
    Guzzi, Pietro Hiram
    Veltri, Pierangelo
    PLOS ONE, 2023, 18 (07):
  • [34] Evolutionary algorithm for feature subset selection in predicting tumor outcomes using microarray data
    Tan, Qihua
    Thomassen, Mads
    Jochumsen, Kirsten M.
    Zhao, Jing Hua
    Christensen, Kaare
    Kruse, Torbert A.
    BIOINFORMATICS RESEARCH AND APPLICATIONS, 2008, 4983 : 426 - +
  • [35] Predicting base editing outcomes using position-specific sequence determinants
    Pallaseni, Ananth
    Peets, Elin Madli
    Koeppel, Jonas
    Weller, Juliane
    Vanderstichele, Thomas
    Ho, Uyen Linh
    Crepaldi, Luca
    van Leeuwen, Jolanda
    Allen, Felicity
    Parts, Leopold
    NUCLEIC ACIDS RESEARCH, 2022, 50 (06) : 3551 - 3564
  • [36] "Found in Translation": predicting outcomes of complex organic chemistry reactions using neural sequence-to-sequence models
    Schwaller, Philippe
    Gaudin, Theophile
    Lanyi, David
    Bekas, Costas
    Laino, Teodoro
    CHEMICAL SCIENCE, 2018, 9 (28) : 6091 - 6098
  • [37] Spatial areas of genotype probability: Predicting the spatial distribution of adaptive genetic variants under future climatic conditions
    Rochat, Estelle
    Selmoni, Oliver
    Joost, Stephane
    DIVERSITY AND DISTRIBUTIONS, 2021, 27 (06) : 1076 - 1090
  • [38] PREDICTING SIGNIFICANCE OF UNKNOWN VARIANTS IN GLIAL TUMORS THROUGH SUB-CLASS ENRICHMENT
    Fichtenholtz, Alex M.
    Camarda, Nicholas D.
    Neumann, Eric K.
    PACIFIC SYMPOSIUM ON BIOCOMPUTING 2016, 2016, : 297 - 308
  • [39] Predicting pathogenic single nucleotide variants through a comprehensive analysis on multiple level features
    Wu, Yiming
    Kuang, Qifan
    Dong, Yongcheng
    Huang, Ziyan
    Li, Yan
    Li, Yizhou
    Li, Menglong
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2016, 156 : 224 - 230
  • [40] Predicting Protein Ligand Binding Sites by Combining Evolutionary Sequence Conservation and 3D Structure
    Capra, John A.
    Laskowski, Roman A.
    Thornton, Janet M.
    Singh, Mona
    Funkhouser, Thomas A.
    PLOS COMPUTATIONAL BIOLOGY, 2009, 5 (12)