Remaining useful life prediction via a deep adaptive transformer framework enhanced by graph attention network

被引:33
|
作者
Liang, Pengfei [1 ,2 ]
Li, Ying [1 ]
Wang, Bin [3 ]
Yuan, Xiaoming [1 ]
Zhang, Lijie [1 ,3 ]
机构
[1] Yanshan Univ, Sch Mech Engn, Qinhuangdao 066004, Peoples R China
[2] Hebei Prov Key Lab Heavy Machinery Fluid Power Tra, Qinhuangdao 066004, Peoples R China
[3] Hebei Agr Univ, Sch Mechatron & Elect Engn, Baoding 071001, Peoples R China
关键词
Remaining useful life; Adaptive transformer; Graph attention network; Multi-sensor data; Information fusion; NEURAL-NETWORK; ENSEMBLE; TURBINE; MODEL;
D O I
10.1016/j.ijfatigue.2023.107722
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Accurate monitoring of mechanical device conditions requires a large number of sensors working together. There are potential connections between sensors throughout the degradation monitoring process of mechanical devices. Conventional deep learning (DL) models suffer from the following shortcomings when dealing with this type of multi-sensor degraded data. To begin with, most existing methods based on DL mainly use CNN as the feature extractor, focusing too much on temporal correlations and ignoring spatial correlations of multiple sensors. Then, the most popular remaining useful life (RUL) model is based on recurrent neural network, which oftentimes suffer from the issue of gradient exploding and vanishing. Therefore, a bran-new end-to-end framework based on a deep adaptative transformer enhanced by graph attention network, named GAT-DAT, is proposed to tackle these weaknesses. First, the graph data is constructed by the correlation of sensors. Next, GAT submodules fuse node features to extract spatial correlation. Finally, the DAT submodule is used to efficiently abstract the tem-poral features of the data through a self-attention mechanism and adaptively implements RUL prediction for mechanical equipment. Two case studies are employed to attest the efficacy of our proposed GAT-DAT model and the analysis of the experimental data illustrates that the GAT-DAT framework outperforms the existing state-of-the-art methods.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] STCGCN: a spatio-temporal complete graph convolutional network for remaining useful life prediction of power transformer
    Xing, Mengda
    Ding, Weilong
    Zhang, Tianpu
    Li, Han
    INTERNATIONAL JOURNAL OF WEB INFORMATION SYSTEMS, 2023, 19 (02) : 102 - 117
  • [22] A Lightweight and Adaptive Knowledge Distillation Framework for Remaining Useful Life Prediction
    Ren, Lei
    Wang, Tao
    Jia, Zidi
    Li, Fangyu
    Han, Honggui
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (08) : 9060 - 9070
  • [23] Spatial attention-based convolutional transformer for bearing remaining useful life prediction
    Chen, Chong
    Wang, Tao
    Liu, Ying
    Cheng, Lianglun
    Qin, Jian
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2022, 33 (11)
  • [24] Convolutional Transformer: An Enhanced Attention Mechanism Architecture for Remaining Useful Life Estimation of Bearings
    Ding, Yifei
    Jia, Minping
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [25] A novel vision transformer network for rolling bearing remaining useful life prediction
    Hu, Aijun
    Zhu, Yancheng
    Liu, Suixian
    Xing, Lei
    Xiang, Ling
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (02)
  • [26] Transformer Network for Remaining Useful Life Prediction of Lithium-Ion Batteries
    Chen, Daoquan
    Hong, Weicong
    Zhou, Xiuze
    IEEE ACCESS, 2022, 10 : 19621 - 19628
  • [27] Remaining Useful Life Prediction via Spatio-Temporal Channels and Transformer
    Zeng, Ming
    Wu, Feng
    Cheng, Yiwei
    IEEE SENSORS JOURNAL, 2023, 23 (23) : 29176 - 29185
  • [28] Hierarchical attention graph convolutional network to fuse multi-sensor signals for remaining useful life prediction
    Li, Tianfu
    Zhao, Zhibin
    Sun, Chuang
    Yan, Ruqiang
    Chen, Xuefeng
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2021, 215
  • [29] An adaptive and dynamical neural network for machine remaining useful life prediction
    Jin, Ruibing
    Zhou, Duo
    Wu, Min
    Li, Xiaoli
    Chen, Zhenghua
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (02) : 1093 - 1102
  • [30] Prediction of Bearing Remaining Useful Life With Deep Convolution Neural Network
    Ren, Lei
    Sun, Yaqiang
    Wang, Hao
    Zhang, Lin
    IEEE ACCESS, 2018, 6 : 13041 - 13049