Remaining useful life prediction via a deep adaptive transformer framework enhanced by graph attention network

被引:33
|
作者
Liang, Pengfei [1 ,2 ]
Li, Ying [1 ]
Wang, Bin [3 ]
Yuan, Xiaoming [1 ]
Zhang, Lijie [1 ,3 ]
机构
[1] Yanshan Univ, Sch Mech Engn, Qinhuangdao 066004, Peoples R China
[2] Hebei Prov Key Lab Heavy Machinery Fluid Power Tra, Qinhuangdao 066004, Peoples R China
[3] Hebei Agr Univ, Sch Mechatron & Elect Engn, Baoding 071001, Peoples R China
关键词
Remaining useful life; Adaptive transformer; Graph attention network; Multi-sensor data; Information fusion; NEURAL-NETWORK; ENSEMBLE; TURBINE; MODEL;
D O I
10.1016/j.ijfatigue.2023.107722
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Accurate monitoring of mechanical device conditions requires a large number of sensors working together. There are potential connections between sensors throughout the degradation monitoring process of mechanical devices. Conventional deep learning (DL) models suffer from the following shortcomings when dealing with this type of multi-sensor degraded data. To begin with, most existing methods based on DL mainly use CNN as the feature extractor, focusing too much on temporal correlations and ignoring spatial correlations of multiple sensors. Then, the most popular remaining useful life (RUL) model is based on recurrent neural network, which oftentimes suffer from the issue of gradient exploding and vanishing. Therefore, a bran-new end-to-end framework based on a deep adaptative transformer enhanced by graph attention network, named GAT-DAT, is proposed to tackle these weaknesses. First, the graph data is constructed by the correlation of sensors. Next, GAT submodules fuse node features to extract spatial correlation. Finally, the DAT submodule is used to efficiently abstract the tem-poral features of the data through a self-attention mechanism and adaptively implements RUL prediction for mechanical equipment. Two case studies are employed to attest the efficacy of our proposed GAT-DAT model and the analysis of the experimental data illustrates that the GAT-DAT framework outperforms the existing state-of-the-art methods.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Transformer Encoder Enhanced by an Adaptive Graph Convolutional Neural Network for Prediction of Aero-Engines' Remaining Useful Life
    Ma, Meng
    Wang, Zhizhen
    Zhong, Zhirong
    AEROSPACE, 2024, 11 (04)
  • [2] Remaining Useful Life Prediction of Bearings Using Reverse Attention Graph Convolution Network With Residual Convolution Transformer
    Peng, Weiting
    Tang, Jing
    Gong, Zeyu
    IEEE SENSORS JOURNAL, 2024, 24 (21) : 35965 - 35974
  • [3] Domain Adaptive Remaining Useful Life Prediction With Transformer
    Li, Xinyao
    Li, Jingjing
    Zuo, Lin
    Zhu, Lei
    Shen, Heng Tao
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [4] Spatio-Temporal Attention Graph Neural Network for Remaining Useful Life Prediction
    Huang, Zhixin
    He, Yujiang
    Sick, Bernhard
    2023 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE, CSCI 2023, 2023, : 99 - 105
  • [5] Remaining useful life prediction of bearings with attention-awared graph convolutional network
    Wei, Yupeng
    Wu, Dazhong
    ADVANCED ENGINEERING INFORMATICS, 2023, 58
  • [6] Multiscale Feature Extension Enhanced Deep Global-Local Attention Network for Remaining Useful Life Prediction
    Li, Rourou
    Jiang, Yimin
    Xia, Tangbin
    Wang, Dong
    Chen, Zhen
    Pan, Ershun
    Xi, Lifeng
    IEEE SENSORS JOURNAL, 2023, 23 (20) : 25557 - 25571
  • [7] Remaining useful life prediction based on multi-scale adaptive attention network
    Liu B.
    Xu J.
    Huo M.
    Cui X.
    Xie X.
    Yang D.
    Wang J.
    Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 2023, 44 (05):
  • [8] Hierarchical graph neural network with adaptive cross-graph fusion for remaining useful life prediction
    Wang, Gang
    Zhang, Yanan
    Lu, Mingfeng
    Wu, Zhangjun
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (05)
  • [9] Spatial-Temporal Evolutionary Graph Attention Network for Bearing Remaining Useful Life Prediction
    Du, Sirui
    Dong, Feng
    Zhang, Shumei
    2024 14TH ASIAN CONTROL CONFERENCE, ASCC 2024, 2024, : 1329 - 1334
  • [10] Path Graph Attention Network-based Bearing Remaining Useful Life Prediction Method
    Yang C.
    Liu J.
    Zhou K.
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2023, 59 (12): : 195 - 201