Morphology Control of WS2 Nanoflakes Using Chemical Vapor Deposition for Improving the Photocatalytic Activity of the WS2/TiO2 Heterostructure

被引:2
|
作者
Thiehmed, Z. A. [1 ]
Altahtamouni, T. M. [1 ]
机构
[1] Qatar Univ, Coll Arts & Sci, Mat Sci & Technol Program, Doha 2713, Qatar
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2023年 / 127卷 / 24期
关键词
CONTROLLED GROWTH; MONOLAYER WS2; CVD GROWTH; MOS2; TEMPERATURE; DICHALCOGENIDES; TRANSITION; LAYERS;
D O I
10.1021/acs.jpcc.3c01836
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Chemical vapor deposition (CVD) is one of the successfultechniquesfor the synthesis of two-dimensional transition metal dichalcogenides(TMDCs) with different morphologies, sizes, and crystal qualities,which are beneficial for different research fields and applications.However, a controllable growth of 2D tungsten disulfide (WS2) with different orientations and sizes is still a challenging issue.In this study, we demonstrate a controllable synthesis of WS2 flakes by optimizing the CVD growth conditions. The results revealedthat tuning the growth pressure successfully provides control overthe orientation of the grown flakes. This monitoring allows for achievingvertically standing WS2 nanoflakes, with maximum exposureto the edge active sites. Aiming for enhanced photocatalytic activity,the construction of vertical WS2 nanoflake/TiO2 nanorod heterostructure was obtained by optimizing the height betweenthe precursor and the substrate, which provides control over the sizeof the flakes. In addition, the achieved WS2/TiO2 heterostructures were evaluated as a photocatalyst for RhodamineB degradation and photoelectrochemical activity (PEC).
引用
收藏
页码:11600 / 11608
页数:9
相关论文
共 50 条
  • [21] Chemical control of the surface of WS2 nanoparticles
    Shalom, H.
    Bendikov, T.
    Feldman, Y.
    Lachman, N.
    Zak, A.
    Tenne, R.
    CHEMICAL PHYSICS LETTERS, 2020, 761
  • [22] Chemical vapor deposited WS2/MoS2 heterostructure photodetector with enhanced photoresponsivity
    Zhang, Yudong
    Chen, Yukun
    Qian, Min
    Xie, Haifen
    Mu, Haichuan
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2022, 55 (17)
  • [23] A WS2/sepiolite composite with highly dispersed WS2 nanosheets for photocatalytic wastewater treatment
    Xie, Xinlei
    Wang, Yulei
    Hao, Ming
    Yan, Penji
    Liang, Jinsheng
    Wang, Dongxu
    Li, Hao
    Wang, Fei
    APPLIED CLAY SCIENCE, 2022, 228
  • [24] Photosensitization of nanostructured TiO2 with WS2 quantum sheets
    Thomalla, M
    Tributsch, H
    JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (24): : 12167 - 12171
  • [25] Preparation and photocatalytic behavior of MoS2 and WS2 nanocluster sensitized TiO2
    Ho, WK
    Yu, JC
    Lin, J
    Yu, JG
    Li, PS
    LANGMUIR, 2004, 20 (14) : 5865 - 5869
  • [26] Synthesis of centimeter-scale WS2 membrane by chemical vapor deposition
    Guoxin Zhang
    Chunxiang Wang
    Bing Yan
    Bo Ning
    Yang Zhao
    Dahua Zhou
    Xuan Shi
    Sikai Chen
    Jun Shen
    Zeyun Xiao
    Hongquan Zhao
    Journal of Materials Science: Materials in Electronics, 2022, 33 : 22560 - 22572
  • [27] Synthesis of centimeter-scale WS2 membrane by chemical vapor deposition
    Zhang, Guoxin
    Wang, Chunxiang
    Yan, Bing
    Ning, Bo
    Zhao, Yang
    Zhou, Dahua
    Shi, Xuan
    Chen, Sikai
    Shen, Jun
    Xiao, Zeyun
    Zhao, Hongquan
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2022, 33 (28) : 22560 - 22572
  • [28] Morphology of multiwall WS2 nanotubes
    Rothschild, A., 2000, American Chemical Society (104):
  • [29] Controllable growth of bilayer WS2 by chemical vapor deposition and application for photodetectors
    Zhao, Sunwen
    Zhang, Yanhui
    Wang, Shuang
    Zhao, Dongyang
    Kang, He
    Li, Jing
    Xiao, Runhan
    Kong, Ziqiang
    Chen, Zhiying
    Sui, Yanping
    Wang, Jianlu
    Chen, Yan
    Yu, Guanghui
    MATERIALS LETTERS, 2022, 317
  • [30] Auger Recombination in Chemical Vapor Deposition-Grown Monolayer WS2
    Cunningham, Paul D.
    McCreary, Kathleen M.
    Jonker, Berend T.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2016, 7 (24): : 5242 - 5246