Al2O3-coated LiNi0.8Co0.15Al0.05O2/graphene composite as a high-performance cathode material for lithium-ion battery

被引:2
|
作者
Loghavi, Mohammad Mohsen [1 ]
Babaiee, Mohsen [1 ]
Eqra, Rahim [1 ]
机构
[1] Inst Mech, Dept Energy Storage, Shiraz, Iran
关键词
ALD; battery; cathode; lithium-ion; NCA-graphene; ATOMIC LAYER DEPOSITION; ELECTROCHEMICAL PERFORMANCE; SURFACE-MODIFICATION; THIN-FILM; GRAPHENE; STABILITY; BEHAVIOR; STORAGE; LICOO2; AL2O3;
D O I
10.3233/MGC-220025
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A cathode material composite containing Al2O3-coated LiNi0.8Co0.15Al0.05O2 (NCA) and graphene was prepared via a combination of ultrasonication and mechanical ball milling. No changes were observed in the crystalline structure of this material relative to the bare and Al2O3-coated LiNi0.8Co0.15Al0.05O2 materials based on the XRD spectrum. SEM images indicated that graphene was well distributed between the active material particles. The composite material was compared with the bare and Al2O3-coated active materials by electrochemical tests to evaluate its performance in the lithium-ion battery. The resistance values of the solid-electrolyte interphase layer and charge transfer were investigated during cycling by electrochemical impedance spectroscopy. The composite material provided the lowest resistance values with high stability during cycling. The capacity retention of the composite material was 27.7% more in comparison to the bare material during 50 cycles of charge/discharge at a 0.5C rate. Remarkably, the rate capability was improved by using the composite material, with a specific capacity of over 130.9 mAh g(-1) at a 3C rate, which means delivering 62.9 mAh g(-1) more capacity than the bare NCA. Graphene improved capacity retention and rate capability through the creation of a protective layer on the particles and providing a conductive medium in the electrode structure.
引用
收藏
页码:67 / 77
页数:11
相关论文
共 50 条
  • [31] Influence of integrated microstructure on the performance of LiNi0.8Co0.15Al0.05O2 as a cathodic material for lithium ion batteries
    Chen, Yongjie
    Li, Ping
    Zhao, Sijia
    Zhuang, Yan
    Zhao, Shiyong
    Zhou, Qun
    Zheng, Junwei
    RSC ADVANCES, 2017, 7 (46): : 29233 - 29239
  • [32] A facile method to synthesize spherical LiNi0.8Co0.15Al0.05O2 cathode material
    Qiu, Zhenping
    Zhang, Yingjie
    Zhang, Mingyu
    Dong, Peng
    Xia, Shubiao
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2017, 28 (24) : 18699 - 18705
  • [33] Surface fluorinated LiNi0.8Co0.15Al0.05O2 as a positive electrode material for lithium ion batteries
    Zhu, Lei
    Liu, Yang
    Wu, Wenyi
    Wu, Xiongwei
    Tang, Weiping
    Wu, Yuping
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (29) : 15156 - 15162
  • [34] Performance and failure analysis of full cell lithium ion battery with LiNi0.8Co0.15Al0.05O2 and silicon electrodes
    Wagner, Nils P.
    Asheim, Karina
    Vullum-Bruer, Fride
    Svensson, Ann Mari
    JOURNAL OF POWER SOURCES, 2019, 437
  • [35] Synthesis and characterization of LiCoO2-coated LiNi0.8Co0.15Al0.05O2 cathode materials
    Liu, Wanmin
    Hu, Guorong
    Du, Ke
    Peng, Zhongdong
    Cao, Yanbing
    Liu, Qiang
    MATERIALS LETTERS, 2012, 83 : 11 - 13
  • [36] Identifying the Distribution of Al3+ in LiNi0.8Co0.15Al0.05O2
    Trease, Nicole M.
    Seymour, Ieuan D.
    Radin, Maxwell D.
    Liu, Haodong
    Liu, Hao
    Hy, Sunny
    Chernova, Natalya
    Parikh, Pritesh
    Devaraj, Arun
    Wiaderek, Kamila M.
    Chupas, Peter J.
    Chapman, Karena W.
    Whittingham, M. Stanley
    Meng, Ying Shirley
    Van der Van, Anton
    Grey, Clare P.
    CHEMISTRY OF MATERIALS, 2016, 28 (22) : 8170 - 8180
  • [37] Effect of surface alkalinity reduction on cycling and rate performance of LiNi0.8Co0.15Al0.05O2 cathode materials for lithium-ion batteries
    Liu, Jie
    Song, Zheng
    Cui, Can
    Zhang, Yang
    Li, Fengsheng
    MATERIALS LETTERS, 2022, 310
  • [38] In situ Raman microscopy of individual LiNi0.8Co0.15Al0.05O2 particles in a Li-ion battery composite cathode
    Lei, JL
    McLarnon, F
    Kostecki, R
    JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (02): : 952 - 957
  • [39] Template-assisted synthesis of LiNi0.8Co0.15Al0.05O2 hollow nanospheres as cathode material for lithium ion batteries
    Xiaoyu Wu
    Junjie Lu
    Yue Han
    Huayu Wu
    Lingli Bu
    Ju Xie
    Chen Qian
    Haibo Li
    Guowang Diao
    Ming Chen
    Journal of Materials Science, 2020, 55 : 9493 - 9503
  • [40] The Role of Sodium in LiNi0.8Co0.15Al0.05O2 Cathode Material and Its Electrochemical Behaviors
    Xie, Hongbin
    Du, Ke
    Hu, Guorong
    Peng, Zhongdong
    Cao, Yanbing
    JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (06): : 3235 - 3241