Metal and Nonmetal Ion Doping Effect on the Dielectric Relaxation of TiO2 Electrodes

被引:2
|
作者
Vishwakarma, Manish Kumar [1 ]
Bag, Monojit [2 ]
Jain, Puneet [1 ]
机构
[1] Indian Inst Technol Roorkee, Dept Phys, Roorkee 247667, Uttaranchal, India
[2] Indian Inst Technol Roorkee, Adv Res Electrochem Impedance Spect Lab, Roorkee 247667, Uttaranchal, India
关键词
dielectric relaxation; spin coating; thin films; titanium dioxide; UV-visible spectroscopy; XRD; IMPEDANCE SPECTROSCOPY; NANOTUBE ARRAYS; WATER; PHOTOCATALYSIS; WETTABILITY; REMOVAL; MODULUS; DESIGN;
D O I
10.1002/pssa.202200807
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Titanium dioxide (TiO2) is a highly stable, photosensitive, and nontoxic metal oxide. The physical and chemical properties of TiO2 electrodes have been explored extensively for the last few decades. However, a detailed and comparative study of the dielectric relaxation and carrier kinetics with the dopants is still lacking. Herein, the crystallinity of TiO2 electrodes decreased with the dopants is reported. The doping of copper (Cu) in TiO2 reduces its bandgap to 2.98 eV from 3.22 eV. The improved charge carrier conduction at high frequencies (omega = 10(3)-10(6) radians s(-1)) with the doping is noticed. The charge transfer resistance (R-ct) for the electrons is minimum for Cu-TiO2 (R-ct = 34.11 omega) and Cu, Zn, and N-TiO2 (R-ct = 27.44 omega) compared to pristine and Cu and Zn-TiO2. Further, the high electrical permittivity is associated with the polar nature of electrodes. The correlation analysis of impedance and modulus spectroscopy data provides a prodigious picture of the charge carrier relaxation and conduction mechanism. A shift in the dielectric relaxation process from Debye type to non-Debye type is observed after doping due to defect-mediated fast relaxation of polarization.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Synthesis and Characterization of Transition Metal Ion Doping on the Photocatalytic Activity of TiO2 Nanoparticles
    Wetchakun, N.
    Chiang, K.
    Amal, R.
    Phanichphant, S.
    2008 2ND IEEE INTERNATIONAL NANOELECTRONICS CONFERENCE, VOLS 1-3, 2008, : 43 - +
  • [22] DOPING DENSITY DEPENDENT ATTACHMENT OF RHB ON TIO2 ELECTRODES
    SCHUMACHER, R
    WILSON, RH
    HARRIS, LA
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1980, 127 (01) : 96 - 99
  • [23] Promoting Effect of Nonmetal Ion Doping and Hierarchically 3D Dendrimeric Architecture for Visible-light-active Mesoporous TiO2 Photocatalyst
    Zhang Chunlei
    Huang Danya
    Sun Minghui
    Ouyang Yiting
    Wang Chao
    Li Xiaoyun
    Chen Lihua
    Su Baolian
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2017, 38 (03): : 471 - 478
  • [24] The photocatalytic activity of TiO2 doping with molybdenum ion
    Zhan, S.
    Fan, S.
    Lin, Z.
    Li, Y.
    Shi, Z.
    Zhongshan Daxue Xuebao/Acta Scientiarum Natralium Universitatis Sunyatseni, 2001, 40 (02): : 125 - 127
  • [25] A strategy of enhancing the photoactivity of TiO2 containing nonmetal and transition metal dopants
    李伟
    韦世豪
    段香梅
    Chinese Physics B, 2014, 23 (02) : 465 - 469
  • [26] A strategy of enhancing the photoactivity of TiO2 containing nonmetal and transition metal dopants
    Li Wei
    Wei Shi-Hao
    Duan Xiang-Mei
    CHINESE PHYSICS B, 2014, 23 (02)
  • [27] ENERGY RELAXATION MECHANISMS OF ELECTROLUMINESCENCE IN SINTERED TIO2 ELECTRODES
    NOGAMI, G
    SHIRATSUCHI, R
    OHKUBO, S
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1991, 138 (03) : 751 - 758
  • [28] Influence of Ce Doping on Optical and Dielectric Properties of TiO2
    Naseem, Swaleha
    Khan, Wasi
    Naqvi, A. H.
    INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC 2015), 2016, 1728
  • [29] Quantitative control of metal doping in TiO2 nanocrystals
    Mia, Shahzahan
    Varapragasam, Shelton Jesuraj Pragash
    Balasanthiran, Choumini
    Hoefelmeyer, James
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [30] Effect of metal and non metal doping of TiO2 on photocatalytic activities: ab initio calculations
    F. Mezzat
    H. Zaari
    A. El Kenz
    A. Benyoussef
    Optical and Quantum Electronics, 2021, 53