Using a Hybrid Neural Network and a Regularized Extreme Learning Machine for Human Activity Recognition with Smartphone and Smartwatch

被引:5
|
作者
Tan, Tan-Hsu [1 ]
Shih, Jyun-Yu [1 ]
Liu, Shing-Hong [2 ]
Alkhaleefah, Mohammad [1 ]
Chang, Yang-Lang [1 ]
Gochoo, Munkhjargal [3 ]
机构
[1] Natl Taipei Univ Technol, Dept Elect Engn, Taipei 10608, Taiwan
[2] Chaoyang Univ Technol, Dept Comp Sci & Informat Engn, Taichung, Taiwan
[3] United Arab Emirates Univ, Dept Comp Sci & Software Engn, Al Ain 15551, U Arab Emirates
关键词
mHealth; human activity recognition; bidirectional gated recurrent unit (BiGRU); regularized extreme machine learning (RELM); PHYSICAL-ACTIVITY; FALL DETECTION;
D O I
10.3390/s23063354
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Mobile health (mHealth) utilizes mobile devices, mobile communication techniques, and the Internet of Things (IoT) to improve not only traditional telemedicine and monitoring and alerting systems, but also fitness and medical information awareness in daily life. In the last decade, human activity recognition (HAR) has been extensively studied because of the strong correlation between people's activities and their physical and mental health. HAR can also be used to care for elderly people in their daily lives. This study proposes an HAR system for classifying 18 types of physical activity using data from sensors embedded in smartphones and smartwatches. The recognition process consists of two parts: feature extraction and HAR. To extract features, a hybrid structure consisting of a convolutional neural network (CNN) and a bidirectional gated recurrent unit GRU (BiGRU) was used. For activity recognition, a single-hidden-layer feedforward neural network (SLFN) with a regularized extreme machine learning (RELM) algorithm was used. The experimental results show an average precision of 98.3%, recall of 98.4%, an F-1-score of 98.4%, and accuracy of 98.3%, which results are superior to those of existing schemes.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Regularized minimum class variance extreme learning machine for language recognition
    Jiaming Xu
    Wei-Qiang Zhang
    Jia Liu
    Shanhong Xia
    EURASIP Journal on Audio, Speech, and Music Processing, 2015
  • [32] GraFeHTy: Graph Neural Network using Federated Learning for Human Activity Recognition
    Sarkar, Abhishek
    Sen, Tanmay
    Roy, Ashis Kumar
    20TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2021), 2021, : 1124 - 1129
  • [33] EEG-based Emotion Recognition Using Discriminative Graph Regularized Extreme Learning Machine
    Zhu, Jia-Yi
    Zheng, Wei-Long
    Peng, Yong
    Duan, Ruo-Nan
    Lu, Bao-Liang
    PROCEEDINGS OF THE 2014 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2014, : 525 - 532
  • [34] Smartphone Based Human Activity Recognition with Feature Selection and Dense Neural Network
    Bashar, Syed K.
    Al Fahim, Md Abdullah
    Chon, Ki H.
    42ND ANNUAL INTERNATIONAL CONFERENCES OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY: ENABLING INNOVATIVE TECHNOLOGIES FOR GLOBAL HEALTHCARE EMBC'20, 2020, : 5888 - 5891
  • [35] A Novel Human Activity Recognition Scheme for Smart Health Using Multilayer Extreme Learning Machine
    Chen, Maojian
    Li, Ying
    Luo, Xiong
    Wang, Weiping
    Wang, Long
    Zhao, Wenbing
    IEEE INTERNET OF THINGS JOURNAL, 2019, 6 (02) : 1410 - 1418
  • [36] Regularized ensemble neural networks models in the Extreme Learning Machine framework
    Perales-Gonzalez, Carlos
    Carbonero-Ruz, Mariano
    Becerra-Alonso, David
    Perez-Rodriguez, Javier
    Fernandez-Navarro, Francisco
    NEUROCOMPUTING, 2019, 361 : 196 - 211
  • [37] Active Machine Learning for Heterogeneity Activity Recognition Through Smartwatch Sensors
    Abbas, Sidra
    Alsubai, Shtwai
    Ul Haque, Muhammad Ibrar
    Sampedro, Gabriel Avelino
    Almadhor, Ahmad
    Al Hejaili, Abdullah
    Ivanochko, Iryna
    IEEE ACCESS, 2024, 12 : 22595 - 22607
  • [38] A hybrid regularized extreme learning machine for automated detection of pathological brain
    Nayak, Deepak Ranjan
    Dash, Ratnakar
    Majhi, Banshidhar
    Zhang, Yudong
    BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2019, 39 (03) : 880 - 892
  • [39] Clothing image classification algorithm based on convolutional neural network and optimized regularized extreme learning machine
    Zhou, Zhiyu
    Liu, Mingxuan
    Deng, Wenxiong
    Wang, Yaming
    Zhu, Zefei
    TEXTILE RESEARCH JOURNAL, 2022, 92 (23-24) : 5106 - 5124
  • [40] A New Framework for Smartphone Sensor-Based Human Activity Recognition Using Graph Neural Network
    Mondal, Riktim
    Mukherjee, Debadyuti
    Singh, Pawan Kumar
    Bhateja, Vikrant
    Sarkar, Ram
    IEEE SENSORS JOURNAL, 2021, 21 (10) : 11461 - 11468