Using a Hybrid Neural Network and a Regularized Extreme Learning Machine for Human Activity Recognition with Smartphone and Smartwatch

被引:5
|
作者
Tan, Tan-Hsu [1 ]
Shih, Jyun-Yu [1 ]
Liu, Shing-Hong [2 ]
Alkhaleefah, Mohammad [1 ]
Chang, Yang-Lang [1 ]
Gochoo, Munkhjargal [3 ]
机构
[1] Natl Taipei Univ Technol, Dept Elect Engn, Taipei 10608, Taiwan
[2] Chaoyang Univ Technol, Dept Comp Sci & Informat Engn, Taichung, Taiwan
[3] United Arab Emirates Univ, Dept Comp Sci & Software Engn, Al Ain 15551, U Arab Emirates
关键词
mHealth; human activity recognition; bidirectional gated recurrent unit (BiGRU); regularized extreme machine learning (RELM); PHYSICAL-ACTIVITY; FALL DETECTION;
D O I
10.3390/s23063354
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Mobile health (mHealth) utilizes mobile devices, mobile communication techniques, and the Internet of Things (IoT) to improve not only traditional telemedicine and monitoring and alerting systems, but also fitness and medical information awareness in daily life. In the last decade, human activity recognition (HAR) has been extensively studied because of the strong correlation between people's activities and their physical and mental health. HAR can also be used to care for elderly people in their daily lives. This study proposes an HAR system for classifying 18 types of physical activity using data from sensors embedded in smartphones and smartwatches. The recognition process consists of two parts: feature extraction and HAR. To extract features, a hybrid structure consisting of a convolutional neural network (CNN) and a bidirectional gated recurrent unit GRU (BiGRU) was used. For activity recognition, a single-hidden-layer feedforward neural network (SLFN) with a regularized extreme machine learning (RELM) algorithm was used. The experimental results show an average precision of 98.3%, recall of 98.4%, an F-1-score of 98.4%, and accuracy of 98.3%, which results are superior to those of existing schemes.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Recognition of Daily Human Activity Using an Artificial Neural Network and Smartwatch
    Kwon, Min-Cheol
    Choi, Sunwoong
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2018,
  • [2] Smartwatch-based Human Activity Recognition Using Hybrid LSTM Network
    Mekruksavanich, Sakorn
    Jitpattanaku, Anuchit
    2020 IEEE SENSORS, 2020,
  • [3] Speech Emotion Recognition Using Deep Neural Network and Extreme Learning Machine
    Han, Kun
    Yu, Dong
    Tashev, Ivan
    15TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2014), VOLS 1-4, 2014, : 223 - 227
  • [4] Sensor-based Complex Human Activity Recognition from Smartwatch Data using Hybrid Deep Learning Network
    Mekruksavanich, Sakorn
    Jitpattanakul, Anuchit
    2021 36TH INTERNATIONAL TECHNICAL CONFERENCE ON CIRCUITS/SYSTEMS, COMPUTERS AND COMMUNICATIONS (ITC-CSCC), 2021,
  • [5] An effective classifier based on convolutional neural network and regularized extreme learning machine
    He, Chunmei
    Kang, Hongyu
    Yao, Tong
    Li, Xiaorui
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2019, 16 (06) : 8309 - 8321
  • [6] A Rough RBF Neural Network Based on Weighted Regularized Extreme Learning Machine
    Shifei Ding
    Gang Ma
    Zhongzhi Shi
    Neural Processing Letters, 2014, 40 : 245 - 260
  • [7] A Rough RBF Neural Network Based on Weighted Regularized Extreme Learning Machine
    Ding, Shifei
    Ma, Gang
    Shi, Zhongzhi
    NEURAL PROCESSING LETTERS, 2014, 40 (03) : 245 - 260
  • [8] Human activity recognition with smartphone sensors using deep learning neural networks
    Ronao, Charissa Ann
    Cho, Sung-Bae
    EXPERT SYSTEMS WITH APPLICATIONS, 2016, 59 : 235 - 244
  • [9] Manifold regularized extreme learning machine for language recognition
    Xu, Jia-Ming
    Zhang, Wei-Qiang
    Yang, Deng-Zhou
    Liu, Jia
    Xia, Shan-Hong
    Zidonghua Xuebao/Acta Automatica Sinica, 2015, 41 (09): : 1680 - 1685
  • [10] Multi-view Regularized Extreme Learning Machine for Human Action Recognition
    Iosifidis, Alexandros
    Tefas, Anastasios
    Pitas, Ioannis
    ARTIFICIAL INTELLIGENCE: METHODS AND APPLICATIONS, 2014, 8445 : 84 - 94