Deep, Flexible Data Embedding with Graph-Based Feature Propagation for Semi-supervised Classification

被引:1
|
作者
Dornaika, Fadi [1 ]
机构
[1] Ho Chi Minh City Open Univ, 97 Vo Van Tan,Dist 3, Ho Chi Minh City 70000, Vietnam
关键词
Semi-supervised learning; Graph-based embedding; Manifold regularization; Graph construction; Deep architecture; Feature propagation; NETWORKS;
D O I
10.1007/s12559-022-10056-w
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Graph-based data representation has recently received much attention in the fields of machine learning and cognitive computation. Deep architectures and the semi-supervised learning paradigm are very closely related to natural cognitive systems. In this paper, and in the context of semi-supervised learning, we will be addressing deep graph-based data representation using a cascade of flexible embedding based on feature propagation over graphs. Inspired by connectionist models, we developed a deep architecture that performs data representation. In each layer, a graph is created over the current representation of the data. This graph is used to aggregate the current features of the input data and provide a layer-specific linear and non-linear representation. The semi-supervised scheme presented simultaneously satisfies several desired properties. These include graph-based regularization of the data structure - a geometrically motivated criterion, flexible non-linear projection (i.e., linear and non-linear projections are jointly estimated), graph-based feature propagation (providing a low-pass filter of the features in each layer), and deep architecture. Our work's main innovative aspect stems from the fact that each layer employs feature propagation (aggregation) before solving the layer-by-layer projection transformations. The proposed model can be learned layer by layer. In each layer, the non-linear data representation and linear regression are jointly estimated with a closed form solution. The proposed method was evaluated using semi-supervised classification tasks with six image datasets. These experiments demonstrated the effectiveness of the proposed approach, which can compete with a variety of competing semi-supervised methods. Compared to a flexible scheme for data representation, the introduced method improved the performance by 8.5% on average. Compared to a recent deep scheme for data representation, the introduced feature propagation improved the performance by 1.3% on average. The use of feature propagation in each layer can improve the flexible model's performance.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条
  • [31] Deep data representation with feature propagation for semi-supervised learning
    F. Dornaika
    V. Truong Hoang
    International Journal of Machine Learning and Cybernetics, 2023, 14 : 1303 - 1316
  • [32] Matrix Completion for Graph-Based Deep Semi-Supervised Learning
    Taherkhani, Fariborz
    Kazemi, Hadi
    Nasrabadi, Nasser M.
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 5058 - 5065
  • [33] A robust graph-based semi-supervised sparse feature selection method
    Sheikhpour, Razieh
    Sarram, Mehdi Agha
    Gharaghani, Sajjad
    Chahooki, Mohammad Ali Zare
    INFORMATION SCIENCES, 2020, 531 : 13 - 30
  • [34] Dual graph wavelet neural network for graph-based semi-supervised classification
    Hu, Kekun
    Dong, Gang
    Zhao, Yaqian
    Li, Rengang
    Jiang, Dongdong
    Chao, Yinyin
    Liu, Haiwei
    Ge, Yuan
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 42 (06) : 5177 - 5188
  • [35] Semi-Supervised Ridge Regression with Adaptive Graph-Based Label Propagation
    Yi, Yugen
    Chen, Yuqi
    Dai, Jiangyan
    Gui, Xiaolin
    Chen, Chunlei
    Lei, Gang
    Wang, Wenle
    APPLIED SCIENCES-BASEL, 2018, 8 (12):
  • [36] A comparison of graph-based semi-supervised learning for data augmentation
    de Oliveira, Willian Dihanster G.
    Penatti, Otavio A. B.
    Berton, Lilian
    2020 33RD SIBGRAPI CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI 2020), 2020, : 264 - 271
  • [37] Adaptive Node Embedding Propagation for Semi-supervised Classification
    Ogawa, Yuya
    Maekawa, Seiji
    Sasaki, Yuya
    Fujiwara, Yasuhiro
    Onizuka, Makoto
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2021: RESEARCH TRACK, PT II, 2021, 12976 : 417 - 433
  • [38] Using Multiple Resources in Graph-Based Semi-supervised Sentiment Classification
    Xu, Ge
    Wang, Houfeng
    2012 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE AND INTELLIGENT AGENT TECHNOLOGY WORKSHOPS (WI-IAT WORKSHOPS 2012), VOL 3, 2012, : 132 - 136
  • [39] A graph-based semi-supervised learning algorithm for web page classification
    Liu, Rong
    Zhou, Jianzhong
    Liu, Ming
    ISDA 2006: SIXTH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS, VOL 2, 2006, : 856 - +
  • [40] Graph-based Semi-supervised Learning with Manifold Preprocessing for Image Classification
    Gong, Yun-Chao
    Liu, Feng
    Chen, Chuanliang
    2008 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), VOLS 1-6, 2008, : 391 - +