Comparative study of some non-Newtonian nanofluid models across stretching sheet: a case of linear radiation and activation energy effects

被引:9
|
作者
Shah, Syed Asif Ali [1 ]
Idrees, Muhammad [1 ]
Bariq, Abdul [2 ]
Ahmad, Bilal [1 ]
Ali, Bagh [3 ]
Ragab, Adham E. [4 ]
Az-Zo'bi, Emad A. [5 ]
机构
[1] Univ Lahore, Dept Math & Stat, Lahore, Pakistan
[2] Laghman Univ, Dept Math, Mehtarlam City 2701, Laghman, Afghanistan
[3] Harbin Inst Technol, Sch Mech Engn & Automat, Shenzhen 518055, Peoples R China
[4] King Saud Univ, Coll Engn, Dept Ind Engn, POB 800, Riyadh 11421, Saudi Arabia
[5] Mutah Univ, Dept Math, Al Karak, Jordan
关键词
Nanofluids; Non-Newtonian fluid models; Casson nanofluid; Williamson nanofluid; Prandtl nanofluid; Thermal radiations; Activation energy; BOUNDARY-LAYER-FLOW; METALLIC NANOPARTICLES; MAGNETIC-FIELD; SIMULATION; IMPACT;
D O I
10.1038/s41598-024-54398-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The use of renewable energy sources is leading the charge to solve the world's energy problems, and non-Newtonian nanofluid dynamics play a significant role in applications such as expanding solar sheets, which are examined in this paper, along with the impacts of activation energy and solar radiation. We solve physical flow issues using partial differential equations and models like Casson, Williamson, and Prandtl. To get numerical solutions, we first apply a transformation to make these equations ordinary differential equations, and then we use the MATLAB-integrated bvp4c methodology. Through the examination of dimensionless velocity, concentration, and temperature functions under varied parameters, our work explores the physical properties of nanofluids. In addition to numerical and tabular studies of the skin friction coefficient, Sherwood number, and local Nusselt number, important components of the flow field are graphically shown and analyzed. Consistent with previous research, this work adds important new information to the continuing conversation in this area. Through the examination of dimensionless velocity, concentration, and temperature functions under varied parameters, our work explores the physical properties of nanofluids. Comparing the Casson nanofluid to the Williamson and Prandtl nanofluids, it is found that the former has a lower velocity. Compared to Casson and Williamson nanofluid, Prandtl nanofluid advanced in heat flux more quickly. The transfer of heat rates are 25.87%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$25.87\%$$\end{document}, 33.61%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$33.61\%$$\end{document} and 40.52%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$40.52\%$$\end{document} at Rd=0.5,Rd=1.0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Rd =0.5, Rd=1.0$$\end{document}, and Rd=1.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Rd=1.5$$\end{document}, respectively. The heat transfer rate is increased by 6.91%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$6.91\%$$\end{document} as the value of Rd rises from 1.0 to 1.5. This study is further strengthened by a comparative analysis with previous research, which is complemented by an extensive table of comparisons for a full evaluation.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Effects of radiation and heat generation for non-Newtonian fluid flow over slendering stretching sheet: Numerically
    Abbas, Nadeem
    Nadeem, Sohail
    Shatanawi, Wasfi
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2023, 103 (05):
  • [22] Thermal analysis of non-Newtonian fluid with radiation and MHD effects over permeable exponential stretching sheet
    Abbas, Nadeem
    Shatanawi, Wasfi
    Mustafa, Zead
    CASE STUDIES IN THERMAL ENGINEERING, 2025, 68
  • [23] Numerical modeling and analysis of non-Newtonian nanofluid featuring activation energy
    Saira Naz
    M. Mudassar Gulzar
    M. Waqas
    T. Hayat
    A. Alsaedi
    Applied Nanoscience, 2020, 10 : 3183 - 3192
  • [24] Numerical modeling and analysis of non-Newtonian nanofluid featuring activation energy
    Naz, Saira
    Gulzar, M. Mudassar
    Waqas, M.
    Hayat, T.
    Alsaedi, A.
    Applied Nanoscience (Switzerland), 2020, 10 (08): : 3183 - 3192
  • [25] Numerical modeling and analysis of non-Newtonian nanofluid featuring activation energy
    Naz, Saira
    Gulzar, M. Mudassar
    Waqas, M.
    Hayat, T.
    Alsaedi, A.
    APPLIED NANOSCIENCE, 2020, 10 (08) : 3183 - 3192
  • [26] Multiple solutions for non-Newtonian nanofluid flow over a stretching sheet with nonlinear thermal radiation: Application in transdermal drug delivery
    Nasser S Elgazery
    Asmaa F Elelamy
    Pramana, 2020, 94
  • [27] Multiple solutions for non-Newtonian nanofluid flow over a stretching sheet with nonlinear thermal radiation: Application in transdermal drug delivery
    Elgazery, Nasser S.
    Elelamy, Asmaa F.
    PRAMANA-JOURNAL OF PHYSICS, 2020, 94 (01):
  • [28] Parametric analysis of pollutant discharge concentration in non-Newtonian nanofluid flow across a permeable Riga sheet with thermal radiation
    Xin, Xiao
    Ganie, Abdul Hamid
    Alwuthaynani, Maher
    Bonyah, Ebenezer
    Khalifa, Hamiden Abd El-Wahed
    Fathima, Dowlath
    Bilal, Muhammad
    AIP ADVANCES, 2024, 14 (04)
  • [29] Boundary layer flow and heat transfer of a non-Newtonian nanofluid over a non-linearly stretching sheet
    Madhu, Macha
    Kishan, Naikoti
    Chamkha, A.
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2016, 26 (07) : 2198 - 2217
  • [30] MHD Non-Newtonian Fluid Flow past a Stretching Sheet under the Influence of Non-linear Radiation and Viscous Dissipation
    Sharma, Ram Prakash
    Shaw, Sachin
    JOURNAL OF APPLIED AND COMPUTATIONAL MECHANICS, 2022, 8 (03): : 949 - 961