DMFF: dual-way multimodal feature fusion for 3D object detection

被引:0
|
作者
Dong, Xiaopeng [1 ]
Di, Xiaoguang [1 ]
Wang, Wenzhuang [1 ]
机构
[1] Harbin Inst Technol, Control & Simulat Ctr, Harbin, Peoples R China
基金
黑龙江省自然科学基金;
关键词
3D object detection; Multimodal feature fusion; Self-attention mechanism; Lidar point clouds; RGB images;
D O I
10.1007/s11760-023-02772-z
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Recently, multimodal 3D object detection that fuses the complementary information from LiDAR data and RGB images has been an active research topic. However, it is not trivial to fuse images and point clouds because of different representations of them. Inadequate feature fusion also brings bad effects on detection performance. We convert images into pseudo point clouds by using a depth completion and utilize a more efficient feature fusion method to address the problems. In this paper, we propose a dual-way multimodal feature fusion network (DMFF) for 3D object detection. Specifically, we first use a dual stream feature extraction module (DSFE) to generate homogeneous LiDAR and pseudo region of interest (RoI) features. Then, we propose a dual-way feature interaction method (DWFI) that enables intermodal and intramodal interaction of the two features. Next, we design a local attention feature fusion module (LAFF) to select which features of the input are more likely to contribute to the desired output. In addition, the proposed DMFF achieves the state-of-the-art performances on the KITTI Dataset.
引用
下载
收藏
页码:455 / 463
页数:9
相关论文
共 50 条
  • [31] Sparse Dense Fusion for 3D Object Detection
    Gao, Yulu
    Sima, Chonghao
    Shi, Shaoshuai
    Di, Shangzhe
    Liu, Si
    Li, Hongyang
    2023 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2023, : 10939 - 10946
  • [32] Voxel Field Fusion for 3D Object Detection
    Li, Yanwei
    Qi, Xiaojuan
    Chen, Yukang
    Wang, Liwei
    Li, Zeming
    Sun, Jian
    Jia, Jiaya
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 1110 - 1119
  • [33] Fully Sparse Fusion for 3D Object Detection
    Li Y.
    Fan L.
    Liu Y.
    Huang Z.
    Chen Y.
    Wang N.
    Zhang Z.
    IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46 (11) : 1 - 15
  • [34] Radar Voxel Fusion for 3D Object Detection
    Nobis, Felix
    Shafiei, Ehsan
    Karle, Phillip
    Betz, Johannes
    Lienkamp, Markus
    APPLIED SCIENCES-BASEL, 2021, 11 (12):
  • [35] Dense projection fusion for 3D object detection
    Zhao Chen
    Bin-Jie Hu
    Chengxi Luo
    Guohao Chen
    Haohui Zhu
    Scientific Reports, 14 (1)
  • [36] A multilevel fusion network for 3D object detection
    Xia, Chunlong
    Wei, Ping
    Wei, Wenwen
    Zheng, Nanning
    Neurocomputing, 2021, 437 : 107 - 117
  • [37] Multimodal 3D Object Detection from Simulated Pretraining
    Brekke, Asmund
    Vatsendvik, Fredrik
    Lindseth, Frank
    NORDIC ARTIFICIAL INTELLIGENCE RESEARCH AND DEVELOPMENT, 2019, 1056 : 102 - 113
  • [38] Virtual Sparse Convolution for Multimodal 3D Object Detection
    Wu, Hai
    Wen, Chenglu
    Shi, Shaoshuai
    Li, Xin
    Wang, Cheng
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 21653 - 21662
  • [39] Multimodal Transformer for Automatic 3D Annotation and Object Detection
    Liu, Chang
    Qian, Xiaoyan
    Huang, Binxiao
    Qi, Xiaojuan
    Lam, Edmund
    Tan, Siew-Chong
    Wong, Ngai
    COMPUTER VISION, ECCV 2022, PT XXXVIII, 2022, 13698 : 657 - 673
  • [40] A vegetation classification method based on improved dual-way branch feature fusion U-net
    Yu, Huiling
    Jiang, Dapeng
    Peng, Xiwen
    Zhang, Yizhuo
    FRONTIERS IN PLANT SCIENCE, 2022, 13