Line graphs of trees with the largest eigenvalue multiplicity

被引:1
|
作者
Yang, Jing [1 ]
Wang, Long [1 ]
机构
[1] Anhui Univ Sci & Technol, Sch Math & Big Data, Huainan, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Eigenvalue multiplicity; Nullity; Line graphs; LAPLACIAN SPECTRUM; NULLITY; TERMS; RANK; NUMBER;
D O I
10.1016/j.laa.2023.07.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let T be a tree with p & GE; 3 pendant edges and let L(T) be its line graph. In this paper, we prove the multiplicity of an arbitrary adjacency eigenvalue of L(T) is no larger than p -1. Furthermore, the line graphs L(T) of trees which contain an adjacency eigenvalue with multiplicity p - 1 are completely determined. & COPY; 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:56 / 65
页数:10
相关论文
共 50 条
  • [31] The graphs for which the maximum multiplicity of an eigenvalue is two
    Johnson, Charles R.
    Loewy, Raphael
    Smith, Paul Anthony
    LINEAR & MULTILINEAR ALGEBRA, 2009, 57 (07): : 713 - 736
  • [32] On the largest eigenvalue of non-regular graphs
    Liu, Bolian
    Shen, Jian
    Wang, Xinmao
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2007, 97 (06) : 1010 - 1018
  • [33] On the second largest normalized Laplacian eigenvalue of graphs
    Sun, Shaowei
    Das, Kinkar Ch.
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 348 : 531 - 541
  • [34] REGULAR GRAPHS WITH SMALL SECOND LARGEST EIGENVALUE
    Koledin, Tamara
    Stanic, Zoran
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2013, 7 (02) : 235 - 249
  • [35] Graphs with small second largest Laplacian eigenvalue
    Wu, Yarong
    Yu, Guanglong
    Shu, Jinlong
    EUROPEAN JOURNAL OF COMBINATORICS, 2014, 36 : 190 - 197
  • [36] The largest eigenvalue conditions for Hamiltonian and traceable graphs
    Li, Rao
    DISCRETE MATHEMATICS LETTERS, 2023, 12 : 50 - 53
  • [37] On graphs with largest Laplacian eigenvalue at most 4
    Omidi, G. R.
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2009, 44 : 163 - 170
  • [38] THE LARGEST EIGENVALUE AND SOME HAMILTONIAN PROPERTIES OF GRAPHS
    Li, Rao
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2018, 34 : 389 - 392
  • [39] Variable neighborhood search for extremal graphs 3. On the largest eigenvalue of color-constrained trees
    Cvetkovic, D
    Simic, S
    Caporossi, G
    Hansen, P
    LINEAR & MULTILINEAR ALGEBRA, 2001, 49 (02): : 143 - 160
  • [40] A Note on Order and Eigenvalue Multiplicity of Strongly Regular Graphs
    Mohammadian, A.
    Tayfeh-Rezaie, B.
    ALGEBRAIC DESIGN THEORY AND HADAMARD MATRICES, ADTHM, 2015, 133 : 209 - 212