Effect of impurities on charge and heat transport in tubular nanowires

被引:0
|
作者
Heris, Hadi Rezaie [1 ]
Klausen, K. O. [1 ]
Sitek, Anna [2 ]
Erlingsson, Sigurdur, I [1 ]
Manolescu, Andrei [1 ]
机构
[1] Reykjavik Univ, Dept Engn, Menntavegur 1, IS-102 Reykjavik, Iceland
[2] Wroclaw Univ Sci & Technol, Dept Theoret Phys, Wybrzeze Wyspianskiego 27, PL-50370 Wroclaw, Poland
关键词
thermoelectric current; tubular nanowires; electron localization; polygonal cross-section; heat transport; SILICON NANOWIRES; THERMOELECTRIC PROPERTIES; THERMAL-CONDUCTIVITY; ELECTRON-MOBILITY; NANOTUBES; PERFORMANCE; SCATTERING; GROWTH;
D O I
10.1088/1361-6528/acd062
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We calculate the charge and heat currents carried by electrons, originating from a temperature gradient and a chemical potential difference between the two ends of tubular nanowires with different geometries of the cross-sectional areas: circular, square, triangular, and hexagonal. We consider nanowires based on InAs semiconductor material, and use the Landauer-Buttiker approach to calculate the transport quantities. We include impurities in the form of delta scatterers and compare their effect for different geometries. The results depend on the quantum localization of the electrons along the edges of the tubular prismatic shell. For example, the effect of impurities on the charge and heat transport is weaker in the triangular shell than in the hexagonal shell, and the thermoelectric current in the triangular case is several times larger than in the hexagonal case, for the same temperature gradient.
引用
下载
收藏
页数:12
相关论文
共 50 条
  • [21] Defect states and disorder in charge transport in semiconductor nanowires
    Ko, Dongkyun
    Zhao, X. W.
    Reddy, Kongara M.
    Restrepo, O. D.
    Mishra, R.
    Lemberger, T. R.
    Beloborodov, I. S.
    Trivedi, Nandini
    Padture, Nitin P.
    Windl, W.
    Yang, F. Y.
    Johnston-Halperin, E.
    JOURNAL OF APPLIED PHYSICS, 2013, 114 (04)
  • [22] Charge transport in DNA nanowires connected to carbon nanotubes
    Tan, Bikan
    Hodak, Miroslav
    Lu, Wenchang
    Bernholc, J.
    PHYSICAL REVIEW B, 2015, 92 (07)
  • [23] Physical constraints on charge transport through bacterial nanowires
    Polizzi, Nicholas F.
    Skourtis, Spiros S.
    Beratan, David N.
    FARADAY DISCUSSIONS, 2012, 155 : 43 - 62
  • [24] Novel charge transport in DNA-templated nanowires
    Wang, Guoqing
    Tanaka, Hirofumi
    Hong, Liu
    Matsuo, Yasutaka
    Niikura, Kenichi
    Abe, Masuhiro
    Matsumoto, Kazuhiko
    Ogawa, Takuji
    Ijiro, Kuniharu
    JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (27) : 13691 - 13697
  • [25] Thermally activated charge transport in microbial protein nanowires
    Sanela Lampa-Pastirk
    Joshua P. Veazey
    Kathleen A. Walsh
    Gustavo T. Feliciano
    Rebecca J. Steidl
    Stuart H. Tessmer
    Gemma Reguera
    Scientific Reports, 6
  • [26] Thermally activated charge transport in microbial protein nanowires
    Lampa-Pastirk, Sanela
    Veazey, Joshua P.
    Walsh, Kathleen A.
    Feliciano, Gustavo T.
    Steidl, Rebecca J.
    Tessmer, Stuart H.
    Reguera, Gemma
    SCIENTIFIC REPORTS, 2016, 6
  • [27] Single charge transport studies in silicon nanowires.
    Zhong, ZH
    Fang, Y
    Yang, C
    Lu, W
    Lieber, CM
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 229 : U703 - U703
  • [28] Non-equilibrium transport and relaxation in diffusive nanowires with Kondo impurities
    Kroha, J
    Rosch, A
    Paaske, J
    Wölfle, P
    ADVANCES IN SOLID STATE PHYSICS 43, 2003, 43 : 223 - 235
  • [29] Electron Transport Properties of Si-Based Nanowires with Substitutional Impurities
    Zhang, Xuehe
    Dong, Jichen
    Wang, Yong
    Li, Li
    Li, Hui
    JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (25): : 12958 - 12965
  • [30] Modeling transport in ultrathin Si nanowires: Charged versus neutral impurities
    Rurali, Riccardo
    Markussen, Troels
    Sune, Jordi
    Brandbyge, Mads
    Jauho, Antti-Pekka
    NANO LETTERS, 2008, 8 (09) : 2825 - 2828