Poisson average maximum likelihood-centered penalized estimator: A new estimator to better address multicollinearity in Poisson regression

被引:3
|
作者
Li, Sheng [1 ,2 ]
Wang, Wei [1 ,2 ]
Yao, Menghan [1 ,2 ]
Wang, Junyu [1 ,2 ]
Du, Qianqian [1 ,2 ]
Li, Xuelin [1 ,2 ]
Tian, Xinyue [1 ,2 ]
Zeng, Jing [3 ]
Deng, Ying [3 ]
Zhang, Tao [1 ,2 ,4 ]
Yin, Fei [1 ]
Ma, Yue [1 ,2 ,4 ]
机构
[1] Sichuan Univ, West China Sch Publ Hlth, Dept Epidemiol & Biostat, Chengdu, Peoples R China
[2] Sichuan Univ, West China Hosp 4, Chengdu, Peoples R China
[3] Sichuan Ctr Dis Control & Prevent, Dept Chron Dis Surveillance, Chengdu, Peoples R China
[4] Sichuan Univ, Inst Syst Epidemiol, West China Sch Publ Hlth, Chengdu, Peoples R China
关键词
multicollinearity; Poisson penalized estimator; Poisson regression; shrinkage center; LIU-TYPE ESTIMATOR; RIDGE-REGRESSION;
D O I
10.1111/stan.12313
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The Poisson ridge estimator (PRE) is a commonly used parameter estimation method to address multicollinearity in Poisson regression (PR). However, PRE shrinks the parameters toward zero, contradicting the real association. In such cases, PRE tends to become an insufficient solution for multicollinearity. In this work, we proposed a new estimator called the Poisson average maximum likelihood-centered penalized estimator (PAMLPE), which shrinks the parameters toward the weighted average of the maximum likelihood estimators. We conducted a simulation study and case study to compare PAMLPE with existing estimators in terms of mean squared error (MSE) and predictive mean squared error (PMSE). These results suggest that PAMLPE can obtain smaller MSE and PMSE (i.e., more accurate estimates) than the Poisson ridge estimator, Poisson Liu estimator, and Poisson K-L estimator when the true & beta;$$ \beta $$s have the same sign and small variation. Therefore, we recommend using PAMLPE to address multicollinearity in PR when the signs of the true & beta;$$ \beta $$s are known to be identical in advance.
引用
收藏
页码:208 / 227
页数:20
相关论文
共 36 条
  • [21] A New Two-Parameter Estimator for the Poisson Regression Model
    Yasin Asar
    Aşır Genç
    Iranian Journal of Science and Technology, Transactions A: Science, 2018, 42 : 793 - 803
  • [22] A new estimator for the multicollinear Poisson regression model: simulation and application
    Lukman, Adewale F.
    Adewuyi, Emmanuel
    Mansson, Kristofer
    Kibria, B. M. Golam
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [23] A maximum likelihood estimator of an inhomogeneous Poisson point process intensity using beta splines
    Krejcir, P
    KYBERNETIKA, 2000, 36 (04) : 455 - 464
  • [24] A new improved Liu-type estimator for Poisson regression models
    Akay, Kadri Ulas
    Ertan, Esra
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2022, 51 (05): : 1484 - 1503
  • [25] A new modified biased estimator for Zero inflated Poisson regression model
    Zeeshan, Muhammad
    Khan, Aamna
    Amanullah, Muhammad
    Bakr, M. E.
    Alshangiti, Arwa M.
    Balogun, Oluwafemi Samson
    Yusuf, M.
    HELIYON, 2024, 10 (03)
  • [26] The Poisson quasi-maximum likelihood estimator: a solution to the 'adding up' problem in gravity models
    Arvis, Jean-Francois
    Shepherd, Ben
    APPLIED ECONOMICS LETTERS, 2013, 20 (06) : 515 - 519
  • [27] Examining the trade potential of the UAE using a gravity model and a Poisson pseudo maximum likelihood estimator
    Ghazvini Kor, Salim
    Fargher, Scott
    Dadakas, Dimitrios
    JOURNAL OF INTERNATIONAL TRADE & ECONOMIC DEVELOPMENT, 2020, 29 (05): : 619 - 646
  • [28] Consistency and Asymptotic Normality of the Maximum Likelihood Estimator in a Zero-inflated Poisson Mixture Distributions
    Yang Aijun
    Yang Zhenhai
    RECENT ADVANCE IN STATISTICS APPLICATION AND RELATED AREAS, VOLS I AND II, 2009, : 732 - 736
  • [29] Average ordinary least squares-centered penalized regression: A more efficient way to address multicollinearity than ridge regression
    Wang, Wei
    Li, Linjian
    Li, Sheng
    Yin, Fei
    Liao, Fang
    Zhang, Tao
    Li, Xiaosong
    Xiao, Xiong
    Ma, Yue
    STATISTICA NEERLANDICA, 2022, 76 (03) : 347 - 368
  • [30] Export Potential of Climate Smart Goods in India: Evidence from the Poisson Pseudo Maximum Likelihood Estimator
    Kumar, Pushp
    Sahu, Naresh Chandra
    Ansari, Mohd Arshad
    INTERNATIONAL TRADE JOURNAL, 2021, 35 (03): : 288 - 308