Hydrodynamics with triangular point group

被引:4
|
作者
Friedman, Aaron J. [1 ]
Cook, Caleb Q. [2 ]
Lucas, Andrew [1 ]
机构
[1] Univ Colorado, Ctr Theory Quantum Matter, Dept Phys, Boulder, CO 80309 USA
[2] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
来源
SCIPOST PHYSICS | 2023年 / 14卷 / 05期
关键词
ELECTRON FLOW; RESISTANCE;
D O I
10.21468/SciPostPhys.14.5.137
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
When continuous rotational invariance of a two-dimensional fluid is broken to the dis-crete, dihedral subgroup D6 - the point group of an equilateral triangle - the resulting anisotropic hydrodynamics breaks both spatial-inversion and time-reversal symmetries, while preserving their combination. In this work, we present the hydrodynamics of such D6-symmetric fluids, identifying new symmetry-allowed dissipative terms in the hydro-dynamic equations of motion. We propose two experiments - both involving high-purity solid-state materials with D6-invariant Fermi surfaces - that are sensitive to these new coefficients in a D6-invariant electron fluid. In particular, we propose a local current imaging experiment (which is present-day realizable with nitrogen vacancy center mag-netometry) in a hexagonal device, whose D6-exploiting boundary conditions enable the unambiguous detection of these novel transport coefficients.
引用
收藏
页数:44
相关论文
共 50 条
  • [21] Near-critical point hydrodynamics and microgravity
    Beysens, DA
    MECHANICS OF THE 21ST CENTURY, 2005, : 117 - 130
  • [22] Inertial coupling for point particle fluctuating hydrodynamics
    Balboa Usabiaga, F.
    Pagonabarraga, I.
    Delgado-Buscalioni, R.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 235 : 701 - 722
  • [23] Computation of the Decomposition Group of a Triangular Ideal
    I. Abdeljaouad-Tej
    S. Orange
    G. Renault
    A. Valibouze
    Applicable Algebra in Engineering, Communication and Computing, 2004, 15 : 279 - 294
  • [24] Group gradings on upper triangular matrices
    Valenti, A.
    Zaicev, M. V.
    ARCHIV DER MATHEMATIK, 2007, 89 (01) : 33 - 40
  • [25] RATIONALITY OF THE FIELDS OF INVARIANTS OF A TRIANGULAR GROUP
    VINBERG, EB
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1982, (02): : 23 - 24
  • [26] Group gradings on upper triangular matrices
    A. Valenti
    M. V. Zaicev
    Archiv der Mathematik, 2007, 89 : 33 - 40
  • [27] Computation of the decomposition group of a triangular ideal
    Abdeljaouad-Tej, I
    Orange, S
    Renault, G
    Valibouze, A
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2004, 15 (3-4) : 279 - 294
  • [28] A note on the fundamental group of a triangular algebra
    Xu, Fan
    ALGEBRA COLLOQUIUM, 2008, 15 (03) : 371 - 378
  • [29] Fast point location algorithm on triangular meshes
    Wichulski, Michal
    Rokicki, Jacek
    JOURNAL OF THEORETICAL AND APPLIED MECHANICS, 2008, 46 (02) : 315 - 324
  • [30] LOCATING A POINT OF MINIMUM VARIANCE ON TRIANGULAR GRAPHS
    KINCAID, RK
    MAIMON, OZ
    TRANSPORTATION SCIENCE, 1989, 23 (03) : 216 - 219