COLORFUL HAMILTON CYCLES IN RANDOM GRAPHS

被引:1
|
作者
Chakraborti, Debsoumya [1 ]
Frieze, Alan M. [2 ]
Hasabnis, Mihir [2 ]
机构
[1] Inst Basic Sci IBS, Discrete Math Grp, Daejeon 34126, South Korea
[2] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
关键词
random graph; rainbow Hamilton cycle; path rotation-extention technique;
D O I
10.1137/21M1403291
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given an n vertex graph whose edges have colored from one of r colors C = {c1, c2, . . . , cr}, we define the Hamilton cycle color profile hcp(G) to be the set of vectors (m1, m2, ... , mr) \in [0, n]r such that there exists a Hamilton cycle that is the concatenation of r paths P1, P2, . . . , Pr, where Pi contains mi edges of color ci. We study hcp(Gn,p) when the edges are randomly colored. We discuss the profile close to the threshold for the existence of a Hamilton cycle and the threshold for when hcp(Gn,p) = {(m1, m2, . . . , mr) \in [0, n]r : m1 + m2 + \cdot \cdot \cdot + mr = n}.
引用
收藏
页码:51 / 64
页数:14
相关论文
共 50 条