THE MOORE-PENROSE INVERSE OF THE RECTANGULAR FIBONACCI MATRIX AND APPLICATIONS TO THE CRYPTOLOGY

被引:3
|
作者
Aydinyuz, Sueleyman [1 ]
Asci, Mustafa [1 ]
机构
[1] Pamukkale Univ, Fac Sci, Dept Math, TR-20160 Denizli, Turkiye
来源
关键词
Fibonacci matrix; the Moore-Penrose generalized inverse; pseudo-inverse; encryption; cryptology;
D O I
10.17654/0974165823066
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we define the general form of the Moore-Penrose inverse for the matrix whose elements are Fibonacci numbers. We examine the states of the matrix F e Mm ,n(C), where F is a rectangular Fibonacci matrix based on the values of m and n. In the second part of this study, we introduce a novel coding theory using the Moore-Penrose inverse of the rectangular Fibonacci matrix and provide illustrative examples. The rectangular Fibonacci matrix plays a crucial role in the construction of the coding algorithm. This coding method is referred to as the "coding theory on rectangular Fibonacci matrix."
引用
收藏
页码:195 / 211
页数:17
相关论文
共 50 条
  • [11] Weighted Moore-Penrose inverse of a Boolean matrix
    Bapat, RB
    Jain, SK
    Pati, S
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1997, 255 : 267 - 279
  • [12] Moore-Penrose inverse of an invertible infinite matrix
    Sivakumar, KC
    LINEAR & MULTILINEAR ALGEBRA, 2006, 54 (01): : 71 - 77
  • [13] The property of Moore-Penrose generalized inverse matrix
    Tian Baoguang
    Wang Nannan
    Xia Lei
    PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON MATRIX ANALYSIS AND APPLICATIONS, VOL 2, 2009, : 289 - 292
  • [14] The Moore-Penrose generalized inverse of a symmetric matrix
    Puntanen, S
    Styan, GPH
    ECONOMETRIC THEORY, 1996, 12 (04) : 748 - 749
  • [15] Moore-Penrose inverse of a Euclidean distance matrix
    Kurata, Hiroshi
    Bapat, Ravindra B.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 472 : 106 - 117
  • [16] Weighted Moore-Penrose Inverse of a Fuzzy Matrix
    Cheng, Shi-zhen
    Li, Hong-xing
    FUZZY INFORMATION AND ENGINEERING, VOLUME 2, 2009, 62 : 573 - +
  • [17] ON THE MOORE-PENROSE INVERSE OF A COMPLETELY SYMMETRICAL MATRIX
    TRENKLER, G
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1994, 49 (3-4) : 230 - 231
  • [18] FAST COMPUTING OF THE MOORE-PENROSE INVERSE MATRIX
    Katsikis, Vasilios N.
    Pappas, Dimitrios
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2008, 17 : 637 - 650
  • [19] The density of the Moore-Penrose inverse of a random matrix
    Inst. of Actuar. Sci. and Economet., University of Amsterdam, Roetersstraat 11, 1018 WB Amsterdam, Netherlands
    Linear Algebra Its Appl, (123-126):
  • [20] Density of the Moore-Penrose inverse of a random matrix
    Linear Algebra Its Appl, (123):