ON RANDIC SPECTRUM OF THE ZERO-DIVISOR GRAPH OVER THE RING Zn

被引:0
|
作者
Rehman, Nadeem Ur [1 ]
Rashid, M. [1 ]
Mozumder, M. R. [1 ]
机构
[1] Aligarh Muslim Univ, Dept Math, Aligarh, India
关键词
Zero-divisor graph; Randic matrix; ring of integer modulo n; LAPLACIAN SPECTRUM;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let R be a commutative ring and Z(R) be its zero-divisors set. The zero -divisor graph of R, denoted by G(R), is an undirected graph with vertex set Z(R)* = Z(R) \ {0} and two distinct vertices a and b are adjacent if and only if ab = 0. In this article, for n = p(M1) q(M2) where p and q are primes (p < q) and M1 and M2 are positive integers, we calculate the Randic eigenvalues of the graphs G(Z(n)).
引用
收藏
页码:385 / 394
页数:10
相关论文
共 50 条