Imidazolium-based ionanofluid electrolytes with viscosity decoupled ion transport properties for lithium-ion batteries

被引:2
|
作者
Deb, Debalina [1 ]
Bhattacharya, Subhratanu [2 ]
机构
[1] Indian Inst Sci, Solid State & Struct Chem Unit SSCU, Bangalore 560012, India
[2] Univ Kalyani, Dept Phys, Nadia 741235, West Bengal, India
关键词
Ionanofluid electrolyte; Imidazolium ionic liquid; Ionic conductivity; Lithium-ion battery; TRANSFERENCE NUMBERS; LIQUID ELECTROLYTES; PHASE-BEHAVIOR; HIGH-ENERGY; NANOPARTICLE; SALT; SAFER; FRAGILITY;
D O I
10.1016/j.molliq.2023.121645
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A series of LiTFSI salt-doped ionanofluid electrolytes based on imidazolium ionic liquid that includes ionic liquid functionalized SnO2 nanoparticles were prepared through a simple solution-chemistry method. The obtained ionanofluid electrolytes exhibit high thermal stability, fragility, and substantially lower crystallinity than the original ionic liquid electrolytes. The temperature-dependent ion conductivity study indicates that in contrast to ionic liquid-based electrolytes, ionanofluid electrolytes are apparent to have viscosity-decoupled ion transport properties. The Li/LiFePO4 cell assembled with 15 wt% LiTFSI salt-doped ionanofluid electrolyte, having the highest Li+ ion transport ability with moderate ion conduc-tivity, demonstrates appreciable cycling performance with excellent rate capability. The cell delivers a room temperature discharge capacity of about similar to 141.2 mAhg(-1) (-88% of theoretical capacity (CTheo) of LiFePO4) at C/5 rate and is able to retain more than 96 % of the same with nearly 99 % coulombic efficiency after 50 charge-discharge cycles. The potentio-electrochemical impedance study reveal that the ionano-fluid electrolyte able to form a stable passivation layer within the cell. The study establishes the enor-mous potential of ionanofluid electrolytes for practical applications in next-generation lithium-ion batteries. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Enhanced lithium-ion transport in organosilyl electrolytes for lithium-ion battery applications
    Lyons, Leslie J.
    Beecher, Scott
    Cunningham, Evan
    Derrah, Tom
    Su, Shengyi
    Zhu, Junmian
    Usrey, Monica
    Pena-Hueso, Adrian
    Johnson, Tobias
    West, Robert
    MRS COMMUNICATIONS, 2019, 9 (03) : 985 - 991
  • [32] Nanostructured Polymer Electrolytes for Lithium-Ion Batteries
    Yoon, Jeong Hoon
    Cho, Won-Jang
    Kang, Tae hui
    Lee, Minjae
    Yi, Gi-Ra
    MACROMOLECULAR RESEARCH, 2021, 29 (08) : 509 - 518
  • [33] Liquid Electrolytes Based on Ionic Liquids for Lithium-Ion Batteries
    My Loan Phung Le
    Ngoc Anh Tran
    Hoang Phuong Khanh Ngo
    Truong Giang Nguyen
    Van Man Tran
    JOURNAL OF SOLUTION CHEMISTRY, 2015, 44 (12) : 2332 - 2343
  • [34] Development in the Ionic Liquid Based Electrolytes for Lithium-Ion Batteries
    Bolimowska, Ewelina
    Samaranayake, Lilantha
    Yahoui, Hamed
    Rouault, Helene
    Santini, Catherine C.
    2017 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL AND INFORMATION SYSTEMS (ICIIS), 2017, : 356 - 361
  • [35] Electrolytes based on sulfone mixtures for lithium and lithium-ion batteries: the low-temperature properties
    L. V. Sheina
    E. V. Karaseva
    N. V. Shakirova
    V. S. Kolosnitsyn
    Russian Chemical Bulletin, 2023, 72 : 2377 - 2383
  • [36] Nanostructured Polymer Electrolytes for Lithium-Ion Batteries
    Jeong Hoon Yoon
    Won-Jang Cho
    Tae Hui Kang
    Minjae Lee
    Gi-Ra Yi
    Macromolecular Research, 2021, 29 : 509 - 518
  • [37] POLYVINYLIDENE FLUORIDE BASED COMPOSITE ELECTROLYTES FOR LITHIUM-ION BATTERIES
    Ussipbekova, Yenlik Zh.
    Seilkhanova, Gulziya A.
    Kurbatov, Andrey P.
    Suleimenova, Gulnur A.
    JOURNAL OF CHEMISTRY AND TECHNOLOGIES, 2022, 30 (04): : 547 - 557
  • [38] Liquid Electrolytes Based on Ionic Liquids for Lithium-Ion Batteries
    My Loan Phung Le
    Ngoc Anh Tran
    Hoang Phuong Khanh Ngo
    Truong Giang Nguyen
    Van Man Tran
    Journal of Solution Chemistry, 2015, 44 : 2332 - 2343
  • [39] Electrolytes based on sulfone mixtures for lithium and lithium-ion batteries: the low-temperature properties
    Sheina, L. V.
    Karaseva, E. V.
    Shakirova, N. V.
    Kolosnitsyn, V. S.
    RUSSIAN CHEMICAL BULLETIN, 2023, 72 (10) : 2377 - 2383
  • [40] Synthesis and properties of new carboxyborate lithium salts as electrolytes for lithium-ion batteries
    Gladka, Dorota
    Krajewski, Mariusz
    Mlynarska, Sandra
    Galinska, Justyna
    Zygadlo-Monikowska, Ewa
    ELECTROCHIMICA ACTA, 2017, 245 : 625 - 633