Spatiotemporal Attention Enhances Lidar-Based Robot Navigation in Dynamic Environments

被引:2
|
作者
de Heuvel, Jorge [1 ,2 ]
Zeng, Xiangyu [1 ]
Shi, Weixian [1 ]
Sethuraman, Tharun [1 ]
Bennewitz, Maren [1 ,2 ]
机构
[1] Univ Bonn, Humanoid Robots Lab, D-53113 Bonn, Germany
[2] Lamarr Inst Machine Learning & Artificial Intellig, D-44227 Dortmund, Germany
关键词
Laser radar; Robots; Navigation; Robot sensing systems; Pedestrians; Legged locomotion; Dynamics; Collision avoidance; motion planning; deep reinforcement learning; mobile robots;
D O I
10.1109/LRA.2024.3373988
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Foresighted robot navigation in dynamic indoor environments with cost-efficient hardware necessitates the use of a lightweight yet dependable controller. So inferring the scene dynamics from sensor readings without explicit object tracking is a pivotal aspect of foresighted navigation among pedestrians. In this letter, we introduce a spatiotemporal attention pipeline for enhanced navigation based on 2D lidar sensor readings. This pipeline is complemented by a novel lidar-state representation that emphasizes dynamic obstacles over static ones. Subsequently, the attention mechanism enables selective scene perception across both space and time, resulting in improved overall navigation performance within dynamic scenarios. We thoroughly evaluated the approach in different scenarios and simulators, finding excellent generalization to unseen environments. The results demonstrate outstanding performance compared to state-of-the-art methods, thereby enabling the seamless deployment of the learned controller on a real robot.
引用
收藏
页码:4202 / 4209
页数:8
相关论文
共 50 条
  • [21] Lidar-based SLAM and autonomous navigation for forestry quadrotors
    Hu, Xuejun
    Wang, Meishan
    Qian, Chenghao
    Huang, Chengjie
    Xia, Yu
    Song, Ming
    2018 IEEE CSAA GUIDANCE, NAVIGATION AND CONTROL CONFERENCE (CGNCC), 2018,
  • [22] Localising Faster: Efficient and precise lidar-based robot localisation in large-scale environments
    Sun, Li
    Adolfsson, Daniel
    Magnusson, Martin
    Andreasson, Henrik
    Posner, Ingmar
    Duckett, Tom
    2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 4386 - 4392
  • [23] Development of a Service Robot for Hospital Environments in Rehabilitation Medicine with LiDAR-Based Simultaneous Localization and Mapping
    Ibrayev, Sayat
    Ibrayeva, Arman
    Amanov, Bekzat
    Joldasbekov, Serik Tolenov
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (11) : 1043 - 1053
  • [24] An efficient LiDAR-based localization method for self-driving cars in dynamic environments
    Zhang, Yihuan
    Wang, Liang
    Jiang, Xuhui
    Zeng, Yong
    Dai, Yifan
    ROBOTICA, 2022, 40 (01) : 38 - 55
  • [25] Lidar-based Obstacle Avoidance for the Autonomous Mobile Robot
    Hutabarat, Dony
    Rivai, Muhammad
    Purwanto, Djoko
    Hutomo, Harjuno
    PROCEEDINGS OF 2019 12TH INTERNATIONAL CONFERENCE ON INFORMATION & COMMUNICATION TECHNOLOGY AND SYSTEM (ICTS), 2019, : 197 - 202
  • [26] Multilayer Lidar-Based Pedestrian Tracking in Urban Environments
    Sato, S.
    Hashimoto, M.
    Takita, M.
    Takagi, K.
    Ogawa, T.
    2010 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2010, : 849 - 854
  • [27] Mobile Robot Navigation Based on Lidar
    Cheng, Yi
    Wang, Gong Ye
    PROCEEDINGS OF THE 30TH CHINESE CONTROL AND DECISION CONFERENCE (2018 CCDC), 2018, : 1243 - 1246
  • [28] Efficient and Robust LiDAR-Based End-to-End Navigation
    Liu, Zhijian
    Amini, Alexander
    Zhu, Sibo
    Karaman, Sertac
    Han, Song
    Rus, Daniela L.
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 13247 - 13254
  • [29] An Adaptive Hierarchical Approach to Lidar-based Autonomous Robotic Navigation
    Brooks, Alexander J. -W.
    Fink, Wolfgang
    Tarbell, Mark A.
    MICRO- AND NANOTECHNOLOGY SENSORS, SYSTEMS, AND APPLICATIONS X, 2018, 10639
  • [30] LiDAR-Based Navigation of Tethered Drone Formations in an Unknown Environment
    Bolognini, M.
    Fagiano, L.
    IFAC PAPERSONLINE, 2020, 53 (02): : 9426 - 9431