Continual Model-Based Reinforcement Learning for Data Efficient Wireless Network Optimisation

被引:0
|
作者
Hasan, Cengis [1 ]
Agapitos, Alexandros [1 ]
Lynch, David [1 ]
Castagna, Alberto [1 ]
Cruciata, Giorgio [1 ]
Wang, Hao [1 ]
Milenovic, Aleksandar [1 ]
机构
[1] Huawei Ireland Res Ctr, Dublin, Ireland
关键词
LATENT;
D O I
10.1007/978-3-031-43427-3_18
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a method that addresses the pain point of long lead-time required to deploy cell-level parameter optimisation policies to new wireless network sites. Given a sequence of action spaces represented by overlapping subsets of cell-level configuration parameters provided by domain experts, we formulate throughput optimisation as Continual Reinforcement Learning of control policies. Simulation results suggest that the proposed system is able to shorten the end-to-end deployment lead-time by two-fold compared to a reinitialise-and-retrain baseline without any drop in optimisation gain.
引用
收藏
页码:295 / 311
页数:17
相关论文
共 50 条
  • [21] The ubiquity of model-based reinforcement learning
    Doll, Bradley B.
    Simon, Dylan A.
    Daw, Nathaniel D.
    [J]. CURRENT OPINION IN NEUROBIOLOGY, 2012, 22 (06) : 1075 - 1081
  • [22] Synthesizing Neural Network Controllers with Probabilistic Model-Based Reinforcement Learning
    Higuera, Juan Camilo Gamboa
    Meger, David
    Dudek, Gregory
    [J]. 2018 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2018, : 2538 - 2544
  • [23] Nonparametric model-based reinforcement learning
    Atkeson, CG
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 10, 1998, 10 : 1008 - 1014
  • [24] Model-based Reinforcement Learning: A Survey
    Moerland, Thomas M.
    Broekens, Joost
    Plaat, Aske
    Jonker, Catholijn M.
    [J]. FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2023, 16 (01): : 1 - 118
  • [25] A survey on model-based reinforcement learning
    Fan-Ming LUO
    Tian XU
    Hang LAI
    Xiong-Hui CHEN
    Weinan ZHANG
    Yang YU
    [J]. Science China(Information Sciences), 2024, 67 (02) : 59 - 84
  • [26] Model-Based Reinforcement Learning Framework of Online Network Resource Allocation
    Bakhshi, Bahador
    Mangues-Bafalluy, Josep
    [J]. IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 4456 - 4461
  • [27] Multiple model-based reinforcement learning
    Doya, K
    Samejima, K
    Katagiri, K
    Kawato, M
    [J]. NEURAL COMPUTATION, 2002, 14 (06) : 1347 - 1369
  • [28] Model-Based Deep Reinforcement Learning Framework for Channel Access in Wireless Networks
    Park, Jong In
    Chae, Jun Byung
    Choi, Kae Won
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (06) : 10150 - 10167
  • [29] A survey on model-based reinforcement learning
    Luo, Fan-Ming
    Xu, Tian
    Lai, Hang
    Chen, Xiong-Hui
    Zhang, Weinan
    Yu, Yang
    [J]. SCIENCE CHINA-INFORMATION SCIENCES, 2024, 67 (02)
  • [30] Model-Based Reinforcement Learning With Probabilistic Ensemble Terminal Critics for Data-Efficient Control Applications
    Park, Jonghyeok
    Jeon, Soo
    Han, Soohee
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2024, 71 (08) : 9470 - 9479