Quasi-homomorphisms of quantum cluster algebras

被引:1
|
作者
Chang, Wen [1 ]
Huang, Min [2 ]
Li, Jian-Rong [3 ]
机构
[1] Shaanxi Normal Univ, Sch Math & Stat, Xian, Peoples R China
[2] Sun Yat Sen Univ, Sch Math Zhuhai, Zhuhai, Peoples R China
[3] Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
基金
美国国家科学基金会; 奥地利科学基金会; 中国国家自然科学基金;
关键词
Quantum cluster algebras; Quasi-homomorphisms; Quantum Grassmannian cluster; algebras; Braid group actions; GRASSMANNIANS; PLUCKER;
D O I
10.1016/j.jalgebra.2023.09.036
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study quasi-homomorphisms of quantum cluster algebras, which are quantum analogy of quasihomomorphisms of cluster algebras introduced by Fraser. For a quantum Grassmannian cluster algebra Cq[Gr(k, n)], we show that there is an associated braid group and each generator sigma i of the braid group preserves the quasi-commutative relations of quantum Plucker coordinates and exchange relations of the quantum Grassmannian cluster algebra. We conjecture that sigma i also preserves r -term (r >= 4) quantum Plucker relations of Cq[Gr(k, n)] and other relations which cannot be derived from quantum Plucker relations (if any). Up to this conjecture, we show that sigma i is a quasi-automorphism of Cq[Gr(k, n)] and the braid group acts on Cq[Gr(k, n)]. (c) 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http:// creativecommons .org /licenses /by /4 .0/).
引用
收藏
页码:506 / 534
页数:29
相关论文
共 50 条
  • [21] Homomorphisms of algebras
    Miroslav Novotný
    Czechoslovak Mathematical Journal, 2002, 52 : 345 - 364
  • [22] Quantum cluster algebras and their specializations
    Gei, Christof
    Leclerc, Bernard
    Schroer, Jan
    JOURNAL OF ALGEBRA, 2020, 558 : 411 - 422
  • [23] Positivity for quantum cluster algebras
    Davison, Ben
    ANNALS OF MATHEMATICS, 2018, 187 (01) : 157 - 219
  • [24] Homomorphisms between different quantum toroidal and affine Yangian algebras
    Bershtein, Mikhail
    Tsymbaliuk, Alexander
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2019, 223 (02) : 867 - 899
  • [25] Quantum Grothendieck rings as quantum cluster algebras
    Bittmann, Lea
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2021, 103 (01): : 161 - 197
  • [26] Quantum Q systems: from cluster algebras to quantum current algebras
    Philippe Di Francesco
    Rinat Kedem
    Letters in Mathematical Physics, 2017, 107 : 301 - 341
  • [27] Quantum Q systems: from cluster algebras to quantum current algebras
    Di Francesco, Philippe
    Kedem, Rinat
    LETTERS IN MATHEMATICAL PHYSICS, 2017, 107 (02) : 301 - 341
  • [28] Quantum loop algebras, quiver varieties, and cluster algebras
    Leclerc, Bernard
    REPRESENTATIONS OF ALGEBRAS AND RELATED TOPICS, 2011, : 117 - 152
  • [29] Connected quantized Weyl algebras and quantum cluster algebras
    Fish, Christopher D.
    Jordan, David A.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2018, 222 (08) : 2374 - 2412
  • [30] Hyers-Ulam-Rassias stability of homomorphisms in quasi-Banach algebras
    Park, Choonkil
    BULLETIN DES SCIENCES MATHEMATIQUES, 2008, 132 (02): : 87 - 96