An ensemble learning approach for diabetes prediction using boosting techniques

被引:11
|
作者
Ganie, Shahid Mohammad [1 ]
Pramanik, Pijush Kanti Dutta [2 ]
Malik, Majid Bashir [3 ]
Mallik, Saurav [4 ]
Qin, Hong [5 ]
机构
[1] Woxsen Univ, AI Res Ctr, Sch Business, Hyderabad, India
[2] Galgotias Univ, Sch Comp Applicat & Technol, Greater Noida, India
[3] Baba Ghulam Shah Badshah Univ, Dept Comp Sci, Rajauri, India
[4] Harvard Univ, Sch Publ Hlth, Dept Environm Hlth, Boston, MA 02138 USA
[5] Univ Tennessee Chattanooga, Coll Engn & Comp Sci, Chattanooga, TN 37403 USA
关键词
diabetes prediction; ensemble learning; XGBoost; CatBoost; LightGBM; AdaBoost; gradient boost;
D O I
10.3389/fgene.2023.1252159
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Introduction: Diabetes is considered one of the leading healthcare concerns affecting millions worldwide. Taking appropriate action at the earliest stages of the disease depends on early diabetes prediction and identification. To support healthcare providers for better diagnosis and prognosis of diseases, machine learning has been explored in the healthcare industry in recent years.Methods: To predict diabetes, this research has conducted experiments on five boosting algorithms on the Pima diabetes dataset. The dataset was obtained from the University of California, Irvine (UCI) machine learning repository, which contains several important clinical features. Exploratory data analysis was used to identify the characteristics of the dataset. Moreover, upsampling, normalisation, feature selection, and hyperparameter tuning were employed for predictive analytics.Results: The results were analysed using various statistical/machine learning metrics and k-fold cross-validation techniques. Gradient boosting achieved the greatest accuracy rate of 92.85% among all the classifiers. Precision, recall, f1-score, and receiver operating characteristic (ROC) curves were used to further validate the model.Discussion: The suggested model outperformed the current studies in terms of prediction accuracy, demonstrating its applicability to other diseases with similar predicate indications.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Improved prediction of software defects using ensemble machine learning techniques
    Mehta, Sweta
    Patnaik, K. Sridhar
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (16): : 10551 - 10562
  • [32] Improving the Accuracy of Financial Bankruptcy Prediction Using Ensemble Learning Techniques
    Njoku, Anthonia Oluchukwu
    Mpinda, Berthine Nyunga
    Awe, Olushina Olawale
    PAN-AFRICAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, PT II, PANAFRICON AI 2023, 2024, 2069 : 3 - 29
  • [33] Prediction Model for a Good Learning Environment Using an Ensemble Approach
    Subha, S.
    Priya, S. Baghavathi
    COMPUTER SYSTEMS SCIENCE AND ENGINEERING, 2023, 44 (03): : 2081 - 2093
  • [34] Heart Disease Prediction Using a Stacked Ensemble Learning Approach
    Shrawan Kumar
    Bharti Thakur
    SN Computer Science, 6 (1)
  • [35] Prediction of Cavity Length Using an Interpretable Ensemble Learning Approach
    Guo, Ganggui
    Li, Shanshan
    Liu, Yakun
    Cao, Ze
    Deng, Yangyu
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2023, 20 (01)
  • [36] Lightning prediction using an ensemble learning approach for northeast of Iran
    Pakdaman, Morteza
    Naghab, Sina Samadi
    Khazanedari, Leili
    Malbousi, Sharare
    Falamarzi, Yashar
    JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS, 2020, 209
  • [37] Assessing Ensemble Learning Techniques in Bug Prediction
    Szamosvolgyi, Zsolt Janos
    Varadi, Endre Tamas
    Toth, Zoltan
    Jasz, Judit
    Ferenc, Rudolf
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS, ICCSA 2021, PT VII, 2021, 12955 : 368 - 381
  • [38] Development of Disease Prediction Model Based on Ensemble Learning Approach for Diabetes and Hypertension
    Fitriyani, Norma Latif
    Syafrudin, Muhammad
    Alfian, Ganjar
    Rhee, Jongtae
    IEEE ACCESS, 2019, 7 : 144777 - 144789
  • [39] An Ensemble of Light Gradient Boosting Machine and Adaptive Boosting for Prediction of Type-2 Diabetes
    Sai, M. Jishnu
    Chettri, Pratiksha
    Panigrahi, Ranjit
    Garg, Amik
    Bhoi, Akash Kumar
    Barsocchi, Paolo
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2023, 16 (01)
  • [40] An Ensemble of Light Gradient Boosting Machine and Adaptive Boosting for Prediction of Type-2 Diabetes
    M. Jishnu Sai
    Pratiksha Chettri
    Ranjit Panigrahi
    Amik Garg
    Akash Kumar Bhoi
    Paolo Barsocchi
    International Journal of Computational Intelligence Systems, 16