An ensemble learning approach for diabetes prediction using boosting techniques

被引:3
|
作者
Ganie, Shahid Mohammad [1 ]
Pramanik, Pijush Kanti Dutta [2 ]
Malik, Majid Bashir [3 ]
Mallik, Saurav [4 ]
Qin, Hong [5 ]
机构
[1] Woxsen Univ, AI Res Ctr, Sch Business, Hyderabad, India
[2] Galgotias Univ, Sch Comp Applicat & Technol, Greater Noida, India
[3] Baba Ghulam Shah Badshah Univ, Dept Comp Sci, Rajauri, India
[4] Harvard Univ, Sch Publ Hlth, Dept Environm Hlth, Boston, MA 02138 USA
[5] Univ Tennessee Chattanooga, Coll Engn & Comp Sci, Chattanooga, TN 37403 USA
关键词
diabetes prediction; ensemble learning; XGBoost; CatBoost; LightGBM; AdaBoost; gradient boost;
D O I
10.3389/fgene.2023.1252159
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Introduction: Diabetes is considered one of the leading healthcare concerns affecting millions worldwide. Taking appropriate action at the earliest stages of the disease depends on early diabetes prediction and identification. To support healthcare providers for better diagnosis and prognosis of diseases, machine learning has been explored in the healthcare industry in recent years.Methods: To predict diabetes, this research has conducted experiments on five boosting algorithms on the Pima diabetes dataset. The dataset was obtained from the University of California, Irvine (UCI) machine learning repository, which contains several important clinical features. Exploratory data analysis was used to identify the characteristics of the dataset. Moreover, upsampling, normalisation, feature selection, and hyperparameter tuning were employed for predictive analytics.Results: The results were analysed using various statistical/machine learning metrics and k-fold cross-validation techniques. Gradient boosting achieved the greatest accuracy rate of 92.85% among all the classifiers. Precision, recall, f1-score, and receiver operating characteristic (ROC) curves were used to further validate the model.Discussion: The suggested model outperformed the current studies in terms of prediction accuracy, demonstrating its applicability to other diseases with similar predicate indications.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Prediction of Anemia using various Ensemble Learning and Boosting Techniques
    Shweta, Nalluri
    Pande, Sagar Dhanraj
    [J]. EAI Endorsed Transactions on Pervasive Health and Technology, 2023, 9 (01)
  • [2] A stacked ensemble machine learning approach for the prediction of diabetes
    Oliullah, Khondokar
    Rasel, Mahedi Hasan
    Islam, Md. Manzurul
    Islam, Md. Reazul
    Wadud, Md. Anwar Hussen
    Whaiduzzaman, Md.
    [J]. JOURNAL OF DIABETES AND METABOLIC DISORDERS, 2023, 23 (1) : 603 - 617
  • [3] Mammographic Classification Using Stacked Ensemble Learning with Bagging and Boosting Techniques
    Abubacker, Nirase Fathima
    Hashem, Ibrahim Abaker Targio
    Hui, Lim Kun
    [J]. JOURNAL OF MEDICAL AND BIOLOGICAL ENGINEERING, 2020, 40 (06) : 908 - 916
  • [4] Mammographic Classification Using Stacked Ensemble Learning with Bagging and Boosting Techniques
    Nirase Fathima Abubacker
    Ibrahim Abaker Targio Hashem
    Lim Kun Hui
    [J]. Journal of Medical and Biological Engineering, 2020, 40 : 908 - 916
  • [5] CLASSIFICATION OF DIABETES USING ENSEMBLE MACHINE LEARNING TECHNIQUES
    Ashisha, G.R.
    Mary, X Anitha
    Raja, J Mahimai
    [J]. Scalable Computing, 2024, 25 (04): : 3172 - 3180
  • [6] A Technical Comparative Heart Disease Prediction Framework Using Boosting Ensemble Techniques
    Nissa, Najmu
    Jamwal, Sanjay
    Neshat, Mehdi
    Zhang, Yudong
    Cauteruccio, Francesco
    [J]. COMPUTATION, 2024, 12 (01)
  • [7] Diabetes Prediction using Machine Learning Techniques
    Obulesu, O.
    Suresh, K.
    Ramudu, B. Venkata
    [J]. HELIX, 2020, 10 (02): : 136 - 142
  • [8] A robust voting approach for diabetes prediction using traditional machine learning techniques
    Atik Mahabub
    [J]. SN Applied Sciences, 2019, 1
  • [10] Performance prediction of roadheaders using ensemble machine learning techniques
    Seker, Sadi Evren
    Ocak, Ibrahim
    [J]. NEURAL COMPUTING & APPLICATIONS, 2019, 31 (04): : 1103 - 1116