FEST: LEARNING SPATIO-TEMPORAL PRIORS FOR FETAL BRAIN MRI SEGMENTATION

被引:0
|
作者
Penuela, Maria F. [1 ]
Vargas, Luisa [1 ]
Usma, Santiago [1 ]
Escobar, Maria [1 ]
Castillo, Angela [1 ]
Arbelaez, Pablo [1 ]
机构
[1] Univ Los Andes, Ctr Res & Format Artificial Intelligence, Bogota, Colombia
关键词
Fetal brain segmentation; Deep learning; Fetal-MRI; Gestational age; U-Net;
D O I
10.1109/ISBI53787.2023.10230531
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Segmentation of anatomic brain structures on fetal magnetic resonance imaging is key in detecting and diagnosing congenital disorders. We propose FeST: a Fetal brain segmentation method, which includes information on the gestational age through Spatio-Temporal priors. We include gestational age in three different priors. We used it as input in our model through a sinusoidal encoding, and in the loss function through KL divergence and a size-prior for modeling the volumetric growth of the brain during development, and that anatomical structures of the brain grow at different rates [1]. We evaluate FeST in the FeTA dataset achieving a Dice similarity coefficient of 0.917, a Volume similarity of 0.974, and a 95th percentile Hausdorff distance of 10.96.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Automatic spatio-temporal video sequence segmentation
    Vass, J
    Palaniappan, K
    Zhuang, XH
    1998 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING - PROCEEDINGS, VOL 1, 1998, : 958 - 962
  • [32] Spatio-Temporal Optimization for Foreground/Backgroud Segmentation
    Feldmann, Tobias
    COMPUTER VISION - ACCV 2010 WORKSHOPS, PT I, 2011, 6468 : 113 - 122
  • [33] Spatio-temporal Filtering for Fetal QRS Enhancement
    Kotas, M.
    Jezewski, J.
    Matonia, A.
    Kupka, T.
    WORLD CONGRESS ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING, VOL 25, PT 4: IMAGE PROCESSING, BIOSIGNAL PROCESSING, MODELLING AND SIMULATION, BIOMECHANICS, 2010, 25 : 389 - 392
  • [34] A spatio-temporal latent atlas for semi-supervised learning of fetal brain segmentations and morphological age estimation
    Dittrich, Eva
    Raviv, Tammy Riklin
    Kasprian, Gregor
    Donner, Rene
    Brugger, Peter C.
    Prayer, Daniela
    Langs, Georg
    MEDICAL IMAGE ANALYSIS, 2014, 18 (01) : 9 - 21
  • [35] Spatio-Temporal Learning from Longitudinal Data for Multiple Sclerosis Lesion Segmentation
    Denner, Stefan
    Khakzar, Ashkan
    Sajid, Moiz
    Saleh, Mahdi
    Spiclin, Ziga
    Kim, Seong Tae
    Navab, Nassir
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2020), PT I, 2021, 12658 : 111 - 121
  • [36] Spatio-temporal transcriptome of the human brain
    Hyo Jung Kang
    Yuka Imamura Kawasawa
    Feng Cheng
    Ying Zhu
    Xuming Xu
    Mingfeng Li
    André M. M. Sousa
    Mihovil Pletikos
    Kyle A. Meyer
    Goran Sedmak
    Tobias Guennel
    Yurae Shin
    Matthew B. Johnson
    Željka Krsnik
    Simone Mayer
    Sofia Fertuzinhos
    Sheila Umlauf
    Steven N. Lisgo
    Alexander Vortmeyer
    Daniel R. Weinberger
    Shrikant Mane
    Thomas M. Hyde
    Anita Huttner
    Mark Reimers
    Joel E. Kleinman
    Nenad Šestan
    Nature, 2011, 478 : 483 - 489
  • [37] Spatio-temporal Analysis of Brain MRI Images Using Hidden Markov Models
    Wang, Ying
    Resnick, Susan M.
    Davatzikos, Christos
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2010, PT II,, 2010, 6362 : 160 - +
  • [38] Spatio-temporal transcriptome of the human brain
    Kang, Hyo Jung
    Kawasawa, Yuka Imamura
    Cheng, Feng
    Zhu, Ying
    Xu, Xuming
    Li, Mingfeng
    Sousa, Andre M. M.
    Pletikos, Mihovil
    Meyer, Kyle A.
    Sedmak, Goran
    Guennel, Tobias
    Shin, Yurae
    Johnson, Matthew B.
    Krsnik, Zeljka
    Mayer, Simone
    Fertuzinhos, Sofia
    Umlauf, Sheila
    Lisgo, Steven N.
    Vortmeyer, Alexander
    Weinberger, Daniel R.
    Mane, Shrikant
    Hyde, Thomas M.
    Huttner, Anita
    Reimers, Mark
    Kleinman, Joel E.
    Sestan, Nenad
    NATURE, 2011, 478 (7370) : 483 - 489
  • [39] Chaotic itinerancy, temporal segmentation and spatio-temporal combinatorial codes
    Dias, Juliana R.
    Oliveira, Rodrigo F.
    Kinouchi, Osame
    PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (01) : 1 - 5
  • [40] Transfer Learning of Fuzzy Spatio-Temporal Rules in a Brain-Inspired Spiking Neural Network Architecture: A Case Study on Spatio-Temporal Brain Data
    Kasabov, Nikola K.
    Tan, Yongyao
    Doborjeh, Maryam
    Tu, Enmei
    Yang, Jie
    Goh, Wilson
    Lee, Jimmy
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2023, 31 (12) : 4542 - 4552