Convergence analysis of generalized ADMM with majorization for linearly constrained composite convex optimization

被引:0
|
作者
Li, Hongwu [1 ,2 ]
Zhang, Haibin [1 ]
Xiao, Yunhai [3 ]
Li, Peili [3 ]
机构
[1] Beijing Univ Technol, Sch Sci, Beijing 100124, Peoples R China
[2] Nanyang Normal Univ, Sch Math & Stat, Nanyang 473061, Peoples R China
[3] Henan Univ, Ctr Appl Math Henan Prov, Kaifeng 475000, Peoples R China
基金
中国国家自然科学基金;
关键词
Composite convex programming; Alternating direction method of multipliers; Majorization; Symmetric Gauss-Seidel iteration; Proximal point term; MINIMIZATION; MULTIPLIERS;
D O I
10.1007/s11590-023-02041-5
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The generalized alternating direction method of multipliers (ADMM) of Xiao et al. (Math Prog Comput 10:533-555, 2018) aims at the two-block linearly constrained composite convex programming problem, in which each block is in the form of "nonsmooth + quadratic". However, in the case of non-quadratic (but smooth), this method may fail unless the favorable structure of "nonsmooth + smooth" is no longer used. This paper aims to remedy this defect by using a majorized technique to approximate the augmented Lagrangian function, so that the corresponding subproblems can be decomposed into some smaller problems and then solved separately. Furthermore, the recent symmetric Gauss-Seidel (sGS) decomposition theorem guarantees the equivalence between the bigger subproblem and these smaller ones. This paper focuses on convergence analysis, that is, we prove that the sequence generated by the proposed method converges globally to a Karush-Kuhn-Tucker point of the considered problem. Finally, we do some numerical experiments on a kind of simulated convex composite optimization problems which illustrate that the proposed method is evidently efficient.
引用
收藏
页码:1173 / 1200
页数:28
相关论文
共 50 条