Benchmark models for conduction and keyhole modes in laser-based powder bed fusion of Inconel 718

被引:9
|
作者
Khorasani, Mahyar [1 ]
Ghasemi, AmirHossein [2 ]
Leary, Martin [1 ]
Downing, David [1 ]
Gibson, Ian [3 ]
Sharabian, Elmira G. [4 ]
Veetil, Jithin Kozhuthala [3 ]
Brandt, Milan [1 ]
Bateman, Stuart [1 ]
Rolfe, Bernard [5 ]
机构
[1] RMIT Univ, Ctr Addit Mfg, Sch Engn, Melbourne, Vic, Australia
[2] Australian Inst Sci & Technol, Ashfield, NSW, Australia
[3] Univ Twente, Fraunhofer Project Ctr Complex Syst Engn, Dept Design Prod & Management, Enschede, Netherlands
[4] CSIRO Mfg, Clayton, Vic 3168, Australia
[5] Deakin Univ, Sch Engn, Waurn Ponds, Vic, Australia
来源
关键词
Additive manufacturing; Conduction mode; Discrete element method; Keyhole mode; Laser-based powder bed fusion; Thermophysical property; PROCESS PARAMETERS; MELT FLOW; POOL; SPATTER;
D O I
10.1016/j.optlastec.2023.109509
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This study proposes a set of novel benchmarks to detect conduction and keyhole modes in Laser-Based Powder Bed Fusion (LB-PBF) of Inconel 718. These proposed detection benchmarks for power transition mode in LB-PBF helps to establish a process window to obtain desirable part quality and improve the mechanical properties. The benchmark identifies the range of process parameters for obtaining and optimising a meltpool depth with fewer defects such as keyholes to ensure that the LB-PBF process is running in a steady state.In this study, four distinct test cases were simulated and compared with the experimental test data to compare existing and novel benchmarks for the prediction of keyhole conduction modes. Then six different test cases that produce low to high melting temperature were selected to form a shallow to deep meltpool. Numerical CFD simulation (Flow-3D V12) was completed for these scenarios and simulated depth and width of the meltpool are calculated. These simulation results were verified according to the measurement of experimentally fabricated test coupons with three repetitions.The proposed benchmarks provide an accurate criterion for the transition from conduction to keyhole transition mode. Results showed that the process temperature and thermophysical properties in LB-PBF strongly drive the observed meltpool features such as depth. By controlling the transition from conduction to keyhole mode the bonding quality can be controlled leading to enhanced quality of the printed components.The original contribution of this paper is to assess the predictive capability of existing transition benchmarks and to provide novel and coherent benchmarks based on a detailed description of the process parameters and the thermophysical properties of the feedstock. The novel benchmarks perform better than the current benchmarks and can be applied for a wide range of process parameters and different materials.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] A comprehensive study on meltpool depth in laser-based powder bed fusion of Inconel 718
    Mahyar Khorasani
    AmirHossein Ghasemi
    Martin Leary
    Laura Cordova
    Elmira Sharabian
    Ehsan Farabi
    Ian Gibson
    Milan Brandt
    Bernard Rolfe
    [J]. The International Journal of Advanced Manufacturing Technology, 2022, 120 : 2345 - 2362
  • [2] A comprehensive study on meltpool depth in laser-based powder bed fusion of Inconel 718
    Khorasani, Mahyar
    Ghasemi, AmirHossein
    Leary, Martin
    Cordova, Laura
    Sharabian, Elmira
    Farabi, Ehsan
    Gibson, Ian
    Brandt, Milan
    Rolfe, Bernard
    [J]. INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2022, 120 (3-4): : 2345 - 2362
  • [3] Numerical investigation of balling defects in laser-based powder bed fusion of metals with Inconel 718
    Zoeller, C.
    Adams, N. A.
    Adami, S.
    [J]. ADDITIVE MANUFACTURING, 2023, 73
  • [4] The microstructure and fatigue performance of Inconel 718 produced by laser-based powder bed fusion and post heat treatment
    Liu, S. Y.
    Shao, S.
    Guo, H.
    Zong, R.
    Qin, C. X.
    Fang, X. Y.
    [J]. INTERNATIONAL JOURNAL OF FATIGUE, 2022, 156
  • [5] Design guidelines for laser powder bed fusion in Inconel 718
    Herzog, Dirk
    Asami, Karim
    Scholl, Christoph
    Ohle, Christoph
    Emmelmann, Claus
    Sharma, Ashish
    Markovic, Nick
    Harris, Andy
    [J]. JOURNAL OF LASER APPLICATIONS, 2022, 34 (01)
  • [6] Creep behaviour of inconel 718 processed by laser powder bed fusion
    Xu, Zhengkai
    Hyde, C. J.
    Tuck, C.
    Clare, A. T.
    [J]. JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2018, 256 : 13 - 24
  • [7] Laser powder bed fusion of Inconel 718 on 316 stainless steel
    Chen, Wei-Ying
    Zhang, Xuan
    Li, Meimei
    Xu, Ruqing
    Zhao, Cang
    Sun, Tao
    [J]. ADDITIVE MANUFACTURING, 2020, 36
  • [8] Spatter and oxide formation in laser powder bed fusion of Inconel 718
    Gasper, A. N. D.
    Szost, B.
    Wang, X.
    Johns, D.
    Sharma, S.
    Clare, A. T.
    Ashcroft, I. A.
    [J]. ADDITIVE MANUFACTURING, 2018, 24 : 446 - 456
  • [9] Process Optimization of Inconel 718 Alloy Produced by Laser Powder Bed Fusion
    Hwang, Jiun-Ren
    Zheng, Jing-Yuan
    Kuo, Po-Chen
    Huang, Chou-Dian
    Fung, Chin-Ping
    [J]. METALS, 2022, 12 (09)
  • [10] Development of Micro Laser Powder Bed Fusion for Additive Manufacturing of Inconel 718
    Khademzadeh, Saeed
    Gennari, Claudio
    Zanovello, Andrea
    Franceschi, Mattia
    Campagnolo, Alberto
    Brunelli, Katya
    [J]. MATERIALS, 2022, 15 (15)