Post-processing of Inconel 718 superalloy by Laser-based Powder Bed Fusion: Microstructures and properties evaluation

被引:0
|
作者
Naskar, Subhendu [1 ]
Suryakumar, S. [2 ]
Panigrahi, Bharat B. [1 ]
机构
[1] Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Telangana, Sangareddy,502284, India
[2] Department of Mechanical & Aerospace Engineering, Indian Institute of Technology Hyderabad, Telangana, Sangareddy,502284, India
关键词
Tensile strength;
D O I
10.1016/j.msea.2024.147601
中图分类号
学科分类号
摘要
In this work, IN718 superalloy has been additively manufactured through Laser-based Powder Bed Fusion (PBF) process. The present investigation aims to study the effect of post printing heat treatments on the metallurgical aspects, such as phases, crystallographic texture, microstructure evolutions and the mechanical properties. Heat treatment optimization has been pursued to achieve a better combination of strength and ductility. PBF fabricated material was further subjected to different heat treatments, comprising of homogenizing, solutionizing and ageing. Material was characterized with respect to the building direction (BD). As-printed specimen exhibits face centered cubic (FCC) γ matrix along with minor amounts of other phases. The melt pool boundaries were found to be rich in Niobium and Molybdenum, indicating segregation during fabrication. Upon post-heat treatments these segregations dissolved considerably. Heat treated microstructure exhibited homogeneously dispersed γ′ and γ′′ phases, and relatively small fractions of carbides, acicular and plate shaped δ phases. Heat treatments led to a significant increase in hardness (by about 54 %) and tensile strength (by about 45 %) while retaining considerable ductility. © 2024 Elsevier B.V.
引用
收藏
相关论文
共 50 条
  • [1] Effects of post-processing route on fatigue performance of laser powder bed fusion Inconel 718
    Ardi, Dennise Tanoko
    Guowei, Lim
    Maharjan, Niroj
    Mutiargo, Bisma
    Leng, Seng Hwee
    Srinivasan, Raghavan
    [J]. ADDITIVE MANUFACTURING, 2020, 36
  • [2] Laser shock peening as a post-processing technique for Inconel 718 components manufactured by laser powder bed fusion
    J. Antonio Banderas-Hernández
    Carlos Rubio-González
    Arturo Gómez-Ortega
    Santiago Flores-García
    Carlos Elí Martínez-Pérez
    [J]. The International Journal of Advanced Manufacturing Technology, 2024, 132 : 669 - 687
  • [3] Laser shock peening as a post-processing technique for Inconel 718 components manufactured by laser powder bed fusion
    Banderas-Hernandez, J. Antonio
    Rubio-Gonzalez, Carlos
    Gomez-Ortega, Arturo
    Flores-Garcia, Santiago
    Martinez-Perez, Carlos Eli
    [J]. INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2024, 132 (1-2): : 669 - 687
  • [4] Microstructures and High-Temperature Mechanical Properties of Inconel 718 Superalloy Fabricated via Laser Powder Bed Fusion
    Li, Nan
    Wang, Changshun
    Li, Chenglin
    [J]. MATERIALS, 2024, 17 (15)
  • [5] A comprehensive study on meltpool depth in laser-based powder bed fusion of Inconel 718
    Khorasani, Mahyar
    Ghasemi, AmirHossein
    Leary, Martin
    Cordova, Laura
    Sharabian, Elmira
    Farabi, Ehsan
    Gibson, Ian
    Brandt, Milan
    Rolfe, Bernard
    [J]. INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2022, 120 (3-4): : 2345 - 2362
  • [6] A comprehensive study on meltpool depth in laser-based powder bed fusion of Inconel 718
    Mahyar Khorasani
    AmirHossein Ghasemi
    Martin Leary
    Laura Cordova
    Elmira Sharabian
    Ehsan Farabi
    Ian Gibson
    Milan Brandt
    Bernard Rolfe
    [J]. The International Journal of Advanced Manufacturing Technology, 2022, 120 : 2345 - 2362
  • [7] Influence of post-processing on very high cycle fatigue resistance of Inconel 718 obtained with laser powder bed fusion
    Yu, Chuanli
    Huang, Zhiyong
    Zhang, Zian
    Shen, Jiebin
    Wang, Jian
    Xu, Zhiping
    [J]. INTERNATIONAL JOURNAL OF FATIGUE, 2021, 153
  • [8] The microstructure and fatigue performance of Inconel 718 produced by laser-based powder bed fusion and post heat treatment
    Liu, S. Y.
    Shao, S.
    Guo, H.
    Zong, R.
    Qin, C. X.
    Fang, X. Y.
    [J]. INTERNATIONAL JOURNAL OF FATIGUE, 2022, 156
  • [9] Numerical investigation of balling defects in laser-based powder bed fusion of metals with Inconel 718
    Zoeller, C.
    Adams, N. A.
    Adami, S.
    [J]. ADDITIVE MANUFACTURING, 2023, 73
  • [10] Benchmark models for conduction and keyhole modes in laser-based powder bed fusion of Inconel 718
    Khorasani, Mahyar
    Ghasemi, AmirHossein
    Leary, Martin
    Downing, David
    Gibson, Ian
    Sharabian, Elmira G.
    Veetil, Jithin Kozhuthala
    Brandt, Milan
    Bateman, Stuart
    Rolfe, Bernard
    [J]. OPTICS AND LASER TECHNOLOGY, 2023, 164