CO2 Capture Improvement in Polyetherimide Membranes: Effect of Ionic Liquid on the Molecular Mobility

被引:1
|
作者
Vedovello, Priscila [1 ]
Paranhos, Caio Marcio [1 ]
机构
[1] Fed Univ Sao Carlos Rod Washington Luiz, Dept Chem, Polymer Lab, Sao Carlos, SP, Brazil
来源
基金
巴西圣保罗研究基金会;
关键词
CO2; capture; ionic liquid; molecular mobility; polyetherimide; polymer membrane; CARBON-DIOXIDE SORPTION; GLASSY-POLYMERS; GAS SEPARATION; FREE-VOLUME; PLASTICIZATION; TRANSPORT; NANOCOMPOSITE; TECHNOLOGIES; PERFORMANCE;
D O I
10.1080/00222348.2023.2199626
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The research described here was aimed at the development of polymeric membranes based on polyetherimide (PEI) containing the ionic liquid (IL) 1-butyl-2,3-dimethylimidazolium hexafluorophosphate ([BMMIM]PF6). The preparation of the PEI-based membranes was carried out via casting of solutions with the incorporation of the IL. The prepared membranes were characterized by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) for thermal and free volume properties. CO2 sorption and permeation properties were measured to evaluate the CO2 capture performance of the membranes. The fractional free volume (FFV) of the membranes was around 15%. The incorporation of IL increased the CO2 sorption capacity, promoting an increase of 330% in the solubility coefficient (K-D) and resulted in a decrease of 96% in CO2 permeability when compared to the control membrane. The presence of IL in the PEI matrix significantly altered the structural and transport characteristics of the analyzed membranes, being efficient for CO2 capture, as they showed a high CO2 solubility and a decrease in CO2 permeation.
引用
收藏
页码:1503 / 1516
页数:14
相关论文
共 50 条
  • [31] Synthesis and CO2 capture properties of a novel poly(ionic liquid)
    School of Material, Nanchang Hangkong University, Nanchang
    330063, China
    Gao Xiao Hua Xue Gong Cheng Xue Bao, 1 (226-231):
  • [32] Poly(ionic liquid)-Based Nanocomposites and Their Performance in CO2 Capture
    Cheng, Hua
    Wang, Ping
    Luo, Jiangshui
    Fransaer, Jan
    De Vos, Dirk E.
    Luo, Zheng-Hong
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2015, 54 (12) : 3107 - 3115
  • [33] CO2 Capture Using Amine Solution Mixed with Ionic Liquid
    Yang, Jie
    Yu, Xinhai
    Yan, Jinyue
    Tu, Shan-Tung
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2014, 53 (07) : 2790 - 2799
  • [34] Design of Supported Ionic Liquid Membranes for CO2 Capture Using a Generative AI-Based Approach
    Ismail, Sarang
    Safari, Habibollah
    Bavarian, Mona
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2025, : 4439 - 4449
  • [35] Poly(ionic liquid)s: Platform for CO2 capture and catalysis
    Zhou, Xianjing
    Weber, Jens
    Yuan, Jiayin
    CURRENT OPINION IN GREEN AND SUSTAINABLE CHEMISTRY, 2019, 16 : 39 - 46
  • [36] Ionic liquid-formulated hybrid solvents for CO2 capture
    Huang, Kuan
    Chen, Feng-Feng
    Tao, Duan-Jian
    Dai, Sheng
    CURRENT OPINION IN GREEN AND SUSTAINABLE CHEMISTRY, 2017, 5 : 67 - 73
  • [37] Poly(ionic liquid)s Nanoparticles Applied in CO2 Capture
    Fernandez, Marisol
    Carreno, Luz Angela
    Bernard, Franciele
    Ligabue, Rosane
    Einloft, Sandra
    MACROMOLECULAR SYMPOSIA, 2016, 368 (01) : 98 - 106
  • [38] CO2 capture with complex absorbent of ionic liquid, surfactant and water
    Zhang, Wenting
    Ye, Longtao
    Jiang, Juncheng
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2015, 3 (01): : 227 - 232
  • [39] Amino acid based poly(ionic liquid) materials for CO2 capture: Effect of anion
    Shahrom, Maisara Shahrom Raja
    Wilfred, Cecilia Devi
    MacFarlane, Douglas R.
    Vijayraghavan, R.
    Chong, Fai Kait
    JOURNAL OF MOLECULAR LIQUIDS, 2019, 276 : 644 - 652
  • [40] Mechanistic insights on ionic liquid and poly(ionic liquid) solutions for CO2 capture and cycloaddition reactions
    Barrulas, Raquel, V
    Barao, Rodrigo M.
    Bernardes, Carlos E. S.
    Zanatta, Marcileia
    Corvo, Marta C.
    CARBON CAPTURE SCIENCE & TECHNOLOGY, 2025, 15