Nitrogen-containing nanoporous carbons synthesized from direct carbonization of non-porous coordination polymers for CO2 capture

被引:3
|
作者
Zhang, Jianhui [1 ]
Zhao, Wenhua [1 ]
Wang, Jun [1 ]
Pan, Xuexue [1 ,2 ]
机构
[1] Zhongshan Polytech, Fac Informat Engn, Teaching & Res Off Appl Chem, Zhongshan 528404, Peoples R China
[2] Poznan Univ Tech, Inst Chem & Tech Electrochem, Fac Chem Technol, Berdychowo 4, PL-60965 Poznan, Poland
关键词
Nitrogen-containing nanoporous carbons; Non-porous coordination polymers; Carbonization; CO2; capture; POROUS CARBON; ADSORPTION; DIOXIDE; SURFACE; PERFORMANCE; MONOLITH; CATALYST; METHANE;
D O I
10.1007/s10934-022-01418-8
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Nitrogen-containing nanoporous carbons are successfully synthesized by direct carbonization of nitrogen-rich non-porous coordination polymers, zinc l-aspartic acid (Zn(C4H7NO4)(H2O)(2)& BULL;H2O), as a template. Nitrogen-doped nanoporous carbon was prepared by using a low-cost and easy-to-synthesize biological coordination polymer (small biomolecular amino acid as a ligand) as a soft template without adding other carbon and nitrogen sources. The surface area and pore size distribution of the resulting carbon materials are studied based on the different carbonization temperatures. Initially, the effect of acidity on the synthesis of zinc l-aspartic acid was studied. Additionally, the effect of different carbonization temperatures on the characterizations and pore properties of nitrogen-containing nanoporous carbons was compared to the potential to absorb CO2. These carbons have a relatively high surface area of 1397.84 m(2)/g, a high pore volume of 0.55 cm(3)/g, and micro-mesopores structures with pore diameters centered at 1.0 and 6.9 nm. Furthermore, the adsorption performance of CO2 gas shows that the sample with a specific surface area of 884.32 m(2)/g, the nitrogen content of 1.50% has a relatively good adsorption property for CO2 with an adsorption capacity of 75.57 cm(3)/g at 273 K. This work demonstrated that the direct carbonization engineering strategy provides a promising way to adsorb CO2.
引用
收藏
页码:1273 / 1282
页数:10
相关论文
共 50 条
  • [31] Equilibrium isotherms and isosteric heat for CO2 adsorption on nanoporous carbons from polymers
    Choma, Jerzy
    Stachurska, Kamila
    Marszewski, Michal
    Jaroniec, Mietek
    ADSORPTION-JOURNAL OF THE INTERNATIONAL ADSORPTION SOCIETY, 2016, 22 (4-6): : 581 - 588
  • [32] Efficient CO2 Capture by Porous Carbons Derived from Coconut Shell
    Yang, Jie
    Yue, Limin
    Hu, Xin
    Wang, Linlin
    Zhao, Yongle
    Lin, Youyou
    Sun, Yan
    DaCosta, Herbert
    Guo, Liping
    ENERGY & FUELS, 2017, 31 (04) : 4287 - 4293
  • [33] CO2 capture in lignin-derived and nitrogen-doped hierarchical porous carbons
    Saha, Dipendu
    Van Bramer, Scott E.
    Orkoulas, Gerassimos
    Ho, Hoi-Chun
    Chen, Jihua
    Henley, Dale K.
    CARBON, 2017, 121 : 257 - 266
  • [34] CO2 capture using highly viscous amine blends in non-porous membrane contactors
    Ansaloni, Luca
    Hartono, Ardi
    Awais, Muhammad
    Knuutila, Hanna K.
    Deng, Liyuan
    CHEMICAL ENGINEERING JOURNAL, 2019, 359 : 1581 - 1591
  • [35] Production of nanoporous carbons from wood processing wastes and their use in supercapacitors and CO2 capture
    Dobele, G.
    Dizhbite, T.
    Gil, M. V.
    Volperts, A.
    Centeno, T. A.
    BIOMASS & BIOENERGY, 2012, 46 : 145 - 154
  • [36] CO2 adsorption on crab shell derived activated carbons: contribution of micropores and nitrogen-containing groups
    Chen, Tao
    Deng, Shubo
    Wang, Bin
    Huang, Jun
    Wang, Yujue
    Yu, Gang
    RSC ADVANCES, 2015, 5 (60) : 48323 - 48330
  • [37] Efficient Removal of Ammonia by Hierarchically Porous Carbons from a CO2 Capture Process
    Choi, Jeong Ho
    Jang, Jong Tak
    Yun, Soung Hee
    Jo, Won Hee
    Lim, Seong Seon
    Park, Joung Ho
    Chun, Il Soo
    Lee, Jung-Hyun
    Yoon, Yeo Il
    CHEMICAL ENGINEERING & TECHNOLOGY, 2020, 43 (10) : 2031 - 2040
  • [38] Enhanced CO2 Capture Capacity of Nitrogen-Doped Biomass-Derived Porous Carbons
    Chen, Jie
    Yang, Jie
    Hu, Gengshen
    Hu, Xin
    Li, Zhiming
    Shen, Siwei
    Radosz, Maciej
    Fan, Maohong
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2016, 4 (03): : 1439 - 1445
  • [39] Facile Carbonization of Microporous Organic Polymers into Hierarchically Porous Carbons Targeted for Effective CO2 Uptake at Low Pressures
    Gu, Shuai
    He, Jianqiao
    Zhu, Yunlong
    Wang, Zhiqiang
    Chen, Dongyang
    Yu, Guipeng
    Pan, Chunyue
    Guan, Jianguo
    Tao, Kai
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (28) : 18383 - 18392
  • [40] Microporous coordination polymers as adsorbents to capture CO2 from humid streams
    Matzger, Adam J.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 242