Enhancement of the production of bio-aromatics from bamboo pyrolysis: Wet torrefaction pretreatment coupled with catalytic fast pyrolysis

被引:10
|
作者
Hu, Zhouyang [1 ]
Zhu, Liang [1 ]
Cai, Hongyi [2 ]
Huang, Ming [1 ]
Li, Jie [1 ]
Cai, Bo [1 ]
Chen, Dengyu [3 ]
Zhu, Lingjun [4 ]
Yang, Youyou [5 ,6 ]
Ma, Zhongqing [1 ,6 ]
机构
[1] Zhejiang A&F Univ, Coll Chem & Mat Engn, Hangzhou 311300, Zhejiang, Peoples R China
[2] Peoples Govt Yaoshan village, Hangzhou 311703, Zhejiang, Peoples R China
[3] Nanjing Forestry Univ, Coll Mat Sci & Engn, Nanjing 210037, Jiangsu Provinc, Peoples R China
[4] Zhejiang Univ, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Zhejiang, Peoples R China
[5] Zhejiang A&F Univ, Coll Humanities & Law, Hangzhou 311300, Zhejiang, Peoples R China
[6] Zhejiang A&F Univ, Coll Chem & Mat Engn, 666 Wusu Rd, Hangzhou 311300, Zhejiang Provin, Peoples R China
基金
中国国家自然科学基金;
关键词
Biomass; Wet torrefaction pretreatment; Deoxygenation and demineralization; Catalytic fast pyrolysis; Bio-aromatics; HYDROTHERMAL CARBONIZATION HTC; OF-THE-ART; LIGNOCELLULOSIC BIOMASS; CHEMICAL-STRUCTURE; DRY TORREFACTION; QUALITY; TEMPERATURE; LIGNIN; OIL; BEHAVIOR;
D O I
10.1016/j.jaap.2022.105818
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Light aromatics are important organic building blocks in the chemical industry which can be produced by cat-alytic fast pyrolysis (CFP) of biomass. In this work, wet torrefaction pretreatment (WTP) was employed to improve the quality of bamboo by synergistic effect of deoxygenation and demineralization. Then, CFP was employed to produce bio-aromatics by using zeolite (e.g. HZSM-5, HY, Al-MCM-41, and USY) as catalyst. Results showed that WTP temperature (180-260 degrees C) had more significant influence on the mass yields of torrefied products compared to WTP duration (30-150 min). The maximum deoxygenation rate was 49.36% at WTP conditions of 260 degrees C and 150 min, and the maximum demineralization rate followed the order of 96.29% (K) > 94.54% (Na) > 90.33% (Mg) > 89.22% (Ca). Among the five types of zeolite catalyst tested, HZSM-5 (25) was the best catalyst to obtain bio-aromatics due to its unique pore size and reasonable acidity. The maximum yield of aromatics (25.46 x107 a.u./mg) was obtained at the WTP temperature of 220 degrees C, biomass-to-catalyst ratio of 3:1, and CFP temperature of 850 degrees C. Toluene was the more favored monocyclic aromatic hydrocarbon formed during CFP compared to xylene and benzene.
引用
下载
收藏
页数:13
相关论文
共 50 条
  • [21] Enhancing production of hydrocarbon-rich bio-oil from biomass via catalytic fast pyrolysis coupled with advanced oxidation process pretreatment
    Wang, Jiapeng
    Zhang, Bo
    Aldeen, Awsan Shujaa
    Mwenya, Stephen
    Cheng, Haoqiang
    Xu, Zhixiang
    Zhang, Huiyan
    BIORESOURCE TECHNOLOGY, 2022, 359
  • [22] Production of aromatics by catalytic fast pyrolysis of cellulose in a bubbling fluidized bed reactor
    Karanjkar, Pranav U.
    Coolman, Robert J.
    Huber, George W.
    Blatnik, Michael T.
    Almalkie, Saba
    de Bruyn Kops, Stephen M.
    Mountziaris, Triantafillos J.
    Conner, William C.
    AICHE JOURNAL, 2014, 60 (04) : 1320 - 1335
  • [23] Hierarchical beta zeolites assisted aromatics production from lignin via catalytic fast pyrolysis
    Wu, Liu
    Liu, Jiaomei
    Chen, Lanxin
    Wang, Xiang
    Zhou, Qi
    Yu, Feng
    Liang, Jie
    CHEMICAL ENGINEERING JOURNAL, 2024, 484
  • [24] Effects of torrefaction temperature and acid pretreatment on the yield and quality of fast pyrolysis bio-oil from rice straw
    Ukaew, Suchada
    Schoenborn, Jacob
    Klemetsrud, Bethany
    Shonnard, David R.
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2018, 129 : 112 - 122
  • [25] Effect of torrefaction on biomass structure and hydrocarbon production from fast pyrolysis
    Neupane, S.
    Adhikari, S.
    Wang, Z.
    Ragauskas, A. J.
    Pu, Y.
    GREEN CHEMISTRY, 2015, 17 (04) : 2406 - 2417
  • [26] Integration of decentralized torrefaction with centralized catalytic pyrolysis to produce green aromatics from coffee grounds
    Chai, Li
    Saffron, Christopher M.
    Yang, Yi
    Zhang, Zhongyu
    Munro, Robert W.
    Kriegel, Robert M.
    BIORESOURCE TECHNOLOGY, 2016, 201 : 287 - 292
  • [27] Catalytic fast pyrolysis of rice husk for bio-oil production
    Cai, Wenfei
    Dai, Li
    Liu, Ronghou
    ENERGY, 2018, 154 : 477 - 487
  • [28] Production of Bio Char and Bio Oils from Botswana Marula Shells through Torrefaction and Pyrolysis
    Rakereng, Janet
    Muzenda, Edison
    Gorimbo, Joshuac
    PROCEEDINGS OF 2019 7TH INTERNATIONAL RENEWABLE AND SUSTAINABLE ENERGY CONFERENCE (IRSEC), 2019, : 440 - 444
  • [29] Co-torrefaction of corncob and waste cooking oil coupled with fast co-pyrolysis for bio-oil production
    Wu, Qiuhao
    Zhang, Letian
    Ke, Linyao
    Zhang, Qi
    Cui, Xian
    Fan, Liangliang
    Dai, Anqi
    Xu, Chuangxin
    Zhang, Qihang
    Bob, Krik
    Zou, Rongge
    Liu, Yuhuan
    Ruan, Roger
    Wang, Yunpu
    BIORESOURCE TECHNOLOGY, 2023, 370
  • [30] Enhancing the production of light olefins and aromatics from fast pyrolysis of cellulose
    Shao, Jingai
    Yang, Mingfa
    Yang, Haiping
    Bai, Xiaowei
    Chen, Hanping
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257