AI2ES: The NSF AI Institute for Research on Trustworthy AI for Weather, Climate, and Coastal Oceanography

被引:0
|
作者
McGovern, Amy [1 ,2 ]
Ebert-Uphoff, Imme [3 ]
Barnes, Elizabeth A. [4 ]
Bostrom, Ann [5 ]
Cains, Mariana G. [6 ]
Davis, Phillip [7 ]
Demuth, Julie L. [6 ]
Diochnos, Dimitrios I. [2 ]
Fagg, Andrew H. [2 ]
Tissot, Philippe [8 ]
Williams, John K. [9 ]
Wirz, Christopher D. [6 ]
机构
[1] Univ Oklahoma, Sch Meteorol, Norman, OK 73019 USA
[2] Univ Oklahoma, Sch Comp Sci, Norman, OK USA
[3] Colorado State Univ, Elect & Comp Engn & Cooperat Inst Res Atmosphere, Ft Collins, CO USA
[4] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO USA
[5] Univ Washington, Evans Sch Publ Policy & Governance, Seattle, WA USA
[6] Natl Ctr Atmospher Res, Boulder, CO USA
[7] Del Mar Coll, Corpus Christi, TX USA
[8] Texas A&M Univ, Conrad Blucher Inst, Corpus Christi, TX USA
[9] IBM Business, Weather Co, Armonk, NY USA
基金
美国国家科学基金会;
关键词
Earth; (planet);
D O I
10.1002/aaai.12160
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The NSF AI Institute for Research on Trustworthy AI in Weather, Climate, and Coastal Oceanography (AI2ES) focuses on creating trustworthy AI for a variety of environmental and Earth science phenomena. AI2ES includes leading experts from AI, atmospheric and ocean science, risk communication, and education, who work synergistically to develop and test trustworthy AI methods that transform our understanding and prediction of the environment. Trust is a social phenomenon, and our integration of risk communication research across AI2ES activities provides an empirical foundation for developing user-informed, trustworthy AI. AI2ES also features activities to broaden participation and for workforce development that are fully integrated with AI2ES research on trustworthy AI, environmental science, and risk communication.
引用
收藏
页码:105 / 110
页数:6
相关论文
共 41 条
  • [41] Summary of the National Cancer Institute 2023 Virtual Workshop on Medical Image De-identification-Part 2: Pathology Whole Slide Image De-identification, De-facing, the Role of AI in Image De-identification, and the NCI MIDI Datasets and Pipeline
    Clunie, David
    Taylor, Adam
    Bisson, Tom
    Gutman, David
    Xiao, Ying
    Schwarz, Christopher G.
    Greve, Douglas
    Gichoya, Judy
    Shih, George
    Kline, Adrienne
    Kopchick, Ben
    Farahani, Keyvan
    JOURNAL OF IMAGING INFORMATICS IN MEDICINE, 2025, 38 (01): : 16 - 30