It is known that the sectional genus of a polarized variety has an upper bound, which is an extension of the Castelnuovo bound on the genus of a projective curve. Polarized varieties whose sectional genus achieve this bound are called Castelnuovo. On the other hand, a lattice polytope is called Castelnuovo if the associated polarized toric variety is Castelnuovo. Kawaguchi characterized Castelnuovo poly topes having interior lattice points in terms of their h*-vectors. In this paper, as a generalization of this result, we present a characterization of all Castelnuovo polytopes. Finally, as an application of our characterization, we give a sufficient criterion for a lattice polytope to be IDP.
机构:
Univ Nice Sophia Antipolis, Lab JA Dieudonne, UMR 6621, CNRS, E Hartford, CT 06108 USAUniv Nice Sophia Antipolis, Lab JA Dieudonne, UMR 6621, CNRS, E Hartford, CT 06108 USA
Blanc, Jeremy
Pan, Ivan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio Grande do Sul, Inst Matemat, Porto Alegre, RS, BrazilUniv Nice Sophia Antipolis, Lab JA Dieudonne, UMR 6621, CNRS, E Hartford, CT 06108 USA
Pan, Ivan
Vust, Thierry
论文数: 0引用数: 0
h-index: 0
机构:
Univ Geneva, Sect Math, CH-1211 Geneva, SwitzerlandUniv Nice Sophia Antipolis, Lab JA Dieudonne, UMR 6621, CNRS, E Hartford, CT 06108 USA
Vust, Thierry
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY,
2008,
39
(01):
: 61
-
80
机构:Dipartimento di Ingegneria dell'Informazione e Matematica Applicata-Sede distaccata, Università degli Studi di Salerno, Baronissi (Salerno), 84081, Via S. Allende