Mitotic Nuclei Segmentation and Classification Using Chaotic Butterfly Optimization Algorithm with Deep Learning on Histopathology Images

被引:1
|
作者
AlGhamdi, Rayed [1 ]
机构
[1] King Abdulaziz Univ, Fac Comp & Informat Technol, Dept Informat Technol, Jeddah 21589, Saudi Arabia
关键词
deep learning; computer-aided diagnosis; mitotic nuclei classification; segmentation; metaheuristics; FRAMEWORK;
D O I
10.3390/biomimetics8060474
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Histopathological grading of the tumors provides insights about the patient's disease conditions, and it also helps in customizing the treatment plans. Mitotic nuclei classification involves the categorization and identification of nuclei in histopathological images based on whether they are undergoing the cell division (mitosis) process or not. This is an essential procedure in several research and medical contexts, especially in diagnosis and prognosis of cancer. Mitotic nuclei classification is a challenging task since the size of the nuclei is too small to observe, while the mitotic figures possess a different appearance as well. Automated calculation of mitotic nuclei is a stimulating one due to their great similarity to non-mitotic nuclei and their heteromorphic appearance. Both Computer Vision (CV) and Machine Learning (ML) approaches are used in the automated identification and the categorization of mitotic nuclei in histopathological images that endure the procedure of cell division (mitosis). With this background, the current research article introduces the mitotic nuclei segmentation and classification using the chaotic butterfly optimization algorithm with deep learning (MNSC-CBOADL) technique. The main objective of the MNSC-CBOADL technique is to perform automated segmentation and the classification of the mitotic nuclei. In the presented MNSC-CBOADL technique, the U-Net model is initially applied for the purpose of segmentation. Additionally, the MNSC-CBOADL technique applies the Xception model for feature vector generation. For the classification process, the MNSC-CBOADL technique employs the deep belief network (DBN) algorithm. In order to enhance the detection performance of the DBN approach, the CBOA is designed for the hyperparameter tuning model. The proposed MNSC-CBOADL system was validated through simulation using the benchmark database. The extensive results confirmed the superior performance of the proposed MNSC-CBOADL system in the classification of mitotic nuclei.
引用
收藏
页数:18
相关论文
共 50 条
  • [11] NUCLEI INSTANCE SEGMENTATION AND CLASSIFICATION IN HISTOPATHOLOGY IMAGES WITH STARDIST
    Weigert, Martin
    Schmidt, Uwe
    2022 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING CHALLENGES (IEEE ISBI 2022), 2022,
  • [12] Mitotic nuclei analysis in breast cancer histopathology images using deep ensemble classifier
    Sohail, Anabia
    Khan, Asifullah
    Nisar, Humaira
    Tabassum, Sobia
    Zameer, Aneela
    MEDICAL IMAGE ANALYSIS, 2021, 72
  • [13] Weakly Supervised Deep Nuclei Segmentation using Points Annotation in Histopathology Images
    Qu, Hui
    Wu, Pengxiang
    Huang, Qiaoying
    Yi, Jingru
    Riedlinger, Gregory M.
    De, Subhajyoti
    Metaxas, Dimitris N.
    INTERNATIONAL CONFERENCE ON MEDICAL IMAGING WITH DEEP LEARNING, VOL 102, 2019, 102 : 390 - 400
  • [14] Hyperparameter Optimization of Deep Learning Networks for Classification of Breast Histopathology Images
    Lin, Cheng-Jian
    Jeng, Shiou-Yun
    Lee, Chin-Ling
    SENSORS AND MATERIALS, 2021, 33 (01) : 315 - 325
  • [15] NucleiSegNet: Robust deep learning architecture for the nuclei segmentation of liver cancer histopathology images
    Lal, Shyam
    Das, Devikalyan
    Alabhya, Kumar
    Kanfade, Anirudh
    Kumar, Aman
    Kini, Jyoti
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 128
  • [16] Segmentation of Nuclei in Histopathology Images by Deep Regression of the Distance Map
    Naylor, Peter
    Lae, Marick
    Reyal, Fabien
    Walter, Thomas
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (02) : 448 - 459
  • [17] Transfer Learning for Cell Nuclei Classification in Histopathology Images
    Bayramoglu, Neslihan
    Heikkila, Janne
    COMPUTER VISION - ECCV 2016 WORKSHOPS, PT III, 2016, 9915 : 532 - 539
  • [18] Weakly Supervised Deep Nuclei Segmentation Using Partial Points Annotation in Histopathology Images
    Qu, Hui
    Wu, Pengxiang
    Huang, Qiaoying
    Yi, Jingru
    Yan, Zhennan
    Li, Kang
    Riedlinger, Gregory M.
    De, Subhajyoti
    Zhang, Shaoting
    Metaxas, Dimitris N.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020, 39 (11) : 3655 - 3666
  • [19] Content-based image retrieval algorithm for nuclei segmentation in histopathology images CBIR algorithm for histopathology image segmentation
    Kurmi, Yashwant
    Chaurasia, Vijayshri
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (02) : 3017 - 3037
  • [20] Automatic cell nuclei segmentation and classification of breast cancer histopathology images
    Wang, Pin
    Hu, Xianling
    Li, Yongming
    Liu, Qianqian
    Zhu, Xinjian
    SIGNAL PROCESSING, 2016, 122 : 1 - 13