Zn/N/S Co-doped hierarchical porous carbon as a high-efficiency oxygen reduction catalyst in Zn-air batteries

被引:0
|
作者
Liu, Mincong [1 ]
Zhang, Jing [2 ,3 ]
Ye, Guohua [1 ]
Peng, Yan [1 ]
Guan, Shiyou [1 ]
机构
[1] Shanghai Univ, Coll Sci, Dept Chem, 99 Shang Da Rd, Shanghai 200444, Peoples R China
[2] Shanghai Univ, Coll Sci, 99 Shang Da Rd, Shanghai 200444, Peoples R China
[3] Shanghai Univ, Inst Sustainable Energy, 99 Shang Da Rd, Shanghai 200444, Peoples R China
关键词
SITES; ELECTROCATALYSTS; COMPLEXES; PORPHYRIN; FUEL;
D O I
10.1039/d3dt03172a
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Zn-N-C catalysts have garnered attention as potential electrocatalysts for the oxygen reduction reaction (ORR). However, their intrinsic limitations, including poor activity and a low density of active sites, continue to hinder their electrocatalytic performance. In this study, we have devised a dual-template strategy for the synthesis of Zn, N, S co-doped nanoporous carbon-based catalysts (Zn-N/S-C(S, Z)) with a substantial specific surface area and a graded pore structure. The introduction of S enhances electron localization around the Zn-Nx active centers, facilitating interactions with oxygen-containing substances. The resulting Zn-N/S-C(S, Z) sample exhibits outstanding performance in an alkaline solution, demonstrating a half-wave potential of 0.89 V. This value surpasses that of commercial Pt/C by 40 mV. Furthermore, when combined with RuO2 (Zn-N/S-C(S, Z) + RuO2), the catalyst demonstrates exceptional performance in a Zn-air battery, offering an open-circuit voltage (OCV) of 1.47 V and a peak power density of 290.8 mW cm-2. This study paves the way for the development of highly dispersed and highly active Zn-metal site catalysts, potentially replacing traditional Pt-based catalysts in various electrochemical devices. Zn/N/S co doped hierarchical porous carbon exhibits excellent performance as an oxygen reduction catalyst for zinc air batteries.
引用
收藏
页码:16773 / 16779
页数:7
相关论文
共 50 条
  • [21] Mn-N-P doped carbon spheres as an efficient oxygen reduction catalyst for high performance Zn-Air batteries
    Li, Jiajie
    Zou, Shanbao
    Huang, Jinzhen
    Wu, Xiaoqian
    Lu, Yue
    Liu, Xundao
    Song, Bo
    Dong, Dehua
    CHINESE CHEMICAL LETTERS, 2023, 34 (01)
  • [22] Mn-N-P doped carbon spheres as an efficient oxygen reduction catalyst for high performance Zn-Air batteries
    Jiajie Li
    Shanbao Zou
    Jinzhen Huang
    Xiaoqian Wu
    Yue Lu
    Xundao Liu
    Bo Song
    Dehua Dong
    Chinese Chemical Letters, 2023, 34 (01) : 207 - 211
  • [23] Co/N-Doped hierarchical porous carbon as an efficient oxygen electrocatalyst for rechargeable Zn-air battery
    Zhou, Wenshu
    Liu, Yanyan
    Liu, Huan
    Wu, Dichao
    Zhang, Gaoyue
    Jiang, Jianchun
    RSC ADVANCES, 2021, 11 (26) : 15753 - 15761
  • [24] Hierarchical N-Doped Porous Carbons for Zn-Air Batteries and Supercapacitors
    Guo, Beibei
    Ma, Ruguang
    Li, Zichuang
    Guo, Shaokui
    Luo, Jun
    Yang, Minghui
    Liu, Qian
    Thomas, Tiju
    Wang, Jiacheng
    NANO-MICRO LETTERS, 2020, 12 (01)
  • [25] Facile Fabrication of Nitrogen, Phosphorus and Silicon Co-Doped Porous Carbon as an Efficient Oxygen Reduction Catalyst for Primary Zn-Air Battery
    Huang, Renxing
    Lei, Ying
    Zhang, Dandan
    Xie, Huaming
    Liu, Xingyong
    Wang, Honghui
    NANO, 2019, 14 (09)
  • [26] Co-CoF2 heterojunctions encapsulated in N, F co-doped porous carbon as bifunctional oxygen electrocatalysts for Zn-air batteries
    Zhu, Yanwei
    Gan, Lang
    Shi, Jianqiao
    Huang, Gen
    Gao, Hongmei
    Tao, Li
    Wang, Shuangyin
    CHEMICAL ENGINEERING JOURNAL, 2022, 433
  • [27] Co-CoF2 heterojunctions encapsulated in N, F co-doped porous carbon as bifunctional oxygen electrocatalysts for Zn-air batteries
    Zhu, Yanwei
    Gan, Lang
    Shi, Jianqiao
    Huang, Gen
    Gao, Hongmei
    Tao, Li
    Wang, Shuangyin
    Chemical Engineering Journal, 2022, 433
  • [28] Hierarchical Porous Carbon with N/S Codoped Bimetal as a High-Efficiency Oxygen Reduction Catalyst for Rechargeable Zinc-Air Batteries
    Bao, Lishi
    Bao, Chenguang
    Sun, Qifeng
    Zou, Jiaxin
    Liu, Hongbo
    Huichen
    ENERGY & FUELS, 2023, 37 (23) : 19137 - 19146
  • [29] Synergistic dual sites of Zn-Mg on hierarchical porous carbon as an advanced oxygen reduction electrocatalyst for Zn-air batteries
    Liu, Mincong
    Zhang, Jing
    Peng, Yan
    Guan, Shiyou
    DALTON TRANSACTIONS, 2024, 53 (21) : 8940 - 8947
  • [30] Preparation of Fe, N co-doped oxygen reduction catalysts from sacrificial templates and their application to Zn-air batteries
    Wu, Shang
    Liu, Chaoyang
    Tian, Shuo
    Sun, Xin
    Wang, Jiajia
    Zhao, Huanlei
    Wang, Yanbin
    Su, Qiong
    Sun, Yuzhi
    Li, Zhenhua
    Yang, Quanlu
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2024, 681