Exciton polariton interactions in Van der Waals superlattices at room temperature

被引:15
|
作者
Zhao, Jiaxin [1 ]
Fieramosca, Antonio [1 ]
Dini, Kevin [1 ]
Bao, Ruiqi [1 ]
Du, Wei [1 ]
Su, Rui [1 ]
Luo, Yuan [2 ,3 ]
Zhao, Weijie [4 ,5 ]
Sanvitto, Daniele [6 ,7 ]
Liew, Timothy C. H. [1 ,8 ]
Xiong, Qihua [2 ,3 ,9 ,10 ,11 ]
机构
[1] Nanyang Technol Univ, Sch Phys & Math Sci, Div Phys & Appl Phys, Singapore 637371, Singapore
[2] Tsinghua Univ, State Key Lab Low Dimens Quantum Phys, Beijing 100084, Peoples R China
[3] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China
[4] Southeast Univ, Sch Phys, Frontiers Sci Ctr Mobile Informat Commun & Secur, Nanjing 211189, Peoples R China
[5] Purple Mt Labs, Nanjing 211111, Peoples R China
[6] CNR NANOTEC Inst Nanotechnol, Via Monteroni, I-73100 Lecce, Italy
[7] INFN Natl Inst Nucl Phys, I-73100 Lecce, Italy
[8] Nanyang Technol Univ, Natl Univ Singapore, Sorbonne Univ,Univ Cote dAzur, MajuLab,Int Joint Res Unit,UMI 3654,CNRS, Singapore, Singapore
[9] Frontier Sci Ctr Quantum Informat, Beijing 100084, Peoples R China
[10] Beijing Acad Quantum Informat Sci, Beijing 100193, Peoples R China
[11] Collaborat Innovat Ctr QuantumMatter, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
BOSE-EINSTEIN CONDENSATION; SUPERFLUIDITY;
D O I
10.1038/s41467-023-36912-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Monolayer transition-metal dichalcogenide (TMD) materials have attracted a great attention because of their unique properties and promising applications in integrated optoelectronic devices. Being layered materials, they can be stacked vertically to fabricate artificial van der Waals lattices, which offer unique opportunities to tailor the electronic and optical properties. The integration of TMD heterostructures in planar microcavities working in strong coupling regime is particularly important to control the light-matter interactions and form robust polaritons, highly sought for room temperature applications. Here, we demonstrate the systematic control of the coupling-strength by embedding multiple WS2 monolayers in a planar microcavity. The vacuum Rabi splitting is enhanced from 36meV for one monolayer up to 72meV for the four-monolayer microcavity. In addition, carrying out time-resolved pump-probe experiments at room temperature we demonstrate the nature of polariton interactions which are dominated by phase space filling effects. Furthermore, we also observe the presence of long-living dark excitations in the multiple monolayer superlattices. Our results pave the way for the realization of polaritonic devices based on planar microcavities embedding multiple monolayers and could potentially lead the way for future devices towards the exploitation of interaction-driven phenomena at room temperature. The authors embed a multiple quantum-well WS2 heterostructure in a planar microcavity and show the systematic control of the normal mode coupling-strength. They find a strong enhancement of the characteristic time scale, which they attribute to long-lived dark excitations emerging in the structure.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Interlayer exciton dynamics in van der Waals heterostructures
    Ovesen, Simon
    Brem, Samuel
    Linderalv, Christopher
    Kuisma, Mikael
    Korn, Tobias
    Erhart, Paul
    Selig, Malte
    Malic, Ermin
    COMMUNICATIONS PHYSICS, 2019, 2 (1)
  • [22] Hyperbolic exciton polaritons in a van der Waals magnet
    Francesco L. Ruta
    Shuai Zhang
    Yinming Shao
    Samuel L. Moore
    Swagata Acharya
    Zhiyuan Sun
    Siyuan Qiu
    Johannes Geurs
    Brian S. Y. Kim
    Matthew Fu
    Daniel G. Chica
    Dimitar Pashov
    Xiaodong Xu
    Di Xiao
    Milan Delor
    X-Y. Zhu
    Andrew J. Millis
    Xavier Roy
    James C. Hone
    Cory R. Dean
    Mikhail I. Katsnelson
    Mark van Schilfgaarde
    D. N. Basov
    Nature Communications, 14 (1)
  • [23] Interlayer exciton dynamics in van der Waals heterostructures
    Simon Ovesen
    Samuel Brem
    Christopher Linderälv
    Mikael Kuisma
    Tobias Korn
    Paul Erhart
    Malte Selig
    Ermin Malic
    Communications Physics, 2
  • [24] Hyperbolic exciton polaritons in a van der Waals magnet
    Ruta, Francesco L.
    Zhang, Shuai
    Shao, Yinming
    Moore, Samuel L.
    Acharya, Swagata
    Sun, Zhiyuan
    Qiu, Siyuan
    Geurs, Johannes
    Kim, Brian S. Y.
    Fu, Matthew
    Chica, Daniel G.
    Pashov, Dimitar
    Xu, Xiaodong
    Xiao, Di
    Delor, Milan
    Zhu, X-y.
    Millis, Andrew J.
    Roy, Xavier
    Hone, James C.
    Dean, Cory R.
    Katsnelson, Mikhail I.
    van Schilfgaarde, Mark
    Basov, D. N.
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [25] Current-induced switching of a van der Waals ferromagnet at room temperature
    Shivam N. Kajale
    Thanh Nguyen
    Corson A. Chao
    David C. Bono
    Artittaya Boonkird
    Mingda Li
    Deblina Sarkar
    Nature Communications, 15
  • [26] Current-induced switching of a van der Waals ferromagnet at room temperature
    Kajale, Shivam N.
    Thanh Nguyen
    Chao, Corson A.
    Bono, David C.
    Boonkird, Artittaya
    Li, Mingda
    Sarkar, Deblina
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [27] Electron–hole liquid in a van der Waals heterostructure photocell at room temperature
    Trevor B. Arp
    Dennis Pleskot
    Vivek Aji
    Nathaniel M. Gabor
    Nature Photonics, 2019, 13 : 245 - 250
  • [28] Strong Exciton-Photon Interactions in the van der Waals Materials Probed by Electron Beams
    Taleb, Masoud
    Lingstadt, Robin
    Hentschel, Mario
    Mashhadi, Soudabeh
    Burghard, Marko
    Giessen, Harald
    van Aken, Peter A.
    Talebi, Nahid
    2021 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2021,
  • [29] Topological mosaics in moiré superlattices of van der Waals heterobilayers
    Tong Q.
    Yu H.
    Zhu Q.
    Wang Y.
    Xu X.
    Yao W.
    Nature Physics, 2017, 13 (4) : 356 - 362
  • [30] Topological mosaics in moire superlattices of van der Waals heterobilayers
    Tong, Qingjun
    Yu, Hongyi
    Zhu, Qizhong
    Wang, Yong
    Xu, Xiaodong
    Yao, Wang
    NATURE PHYSICS, 2017, 13 (04) : 356 - 362