On g-frame representations via linear operators

被引:0
|
作者
Jahedi, S. [1 ]
Javadi, F. [1 ]
Mehdipour, M. J. [1 ]
机构
[1] Shiraz Univ Technol, Dept Math, POB 71555-313, Shiraz, Iran
关键词
g-Frame; Linear operator; Perturbation; Stability; FUSION FRAMES;
D O I
10.1007/s11868-023-00546-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let {Mk}k?Z be a sequence of closed subspaces of Hilbert space H, and let {Tk}k?Z be a sequence of linear operators from H into Mk, k ? Z. In the case where, Tk is selfadjoint andTk(Mk) = Mk for all k ? Z, we show that if a g-frame {(Mk, Tk)}k?Z is represented via a linear operator T on span{Mk}k?Z, then T is bounded; moreover, if {(Mk, Tk)}k?Z is a tight g- frame, then T is not invertible. We also study the perturbation and the stability of these g-frames. Finally, we give some examples to show the validity of the results. A preliminary version of this manuscript was submitted to https://arxiv.org/abs/2305.08182 This version is a reedited copy of it.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] G-frames and g-frame sequences in Hilbert spaces
    Yan Jin Wang
    Yu Can Zhu
    Acta Mathematica Sinica, English Series, 2009, 25 : 2093 - 2106
  • [22] Invertibility of generalized g-frame multipliers in Hilbert spaces
    Moosavianfard, Z.
    Abolghasemi, M.
    Tolooei, Y.
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (08): : 1590 - 1609
  • [23] Comment on "Continuous g-Frame in Hilbert C*-Modules"
    Xiang, Zhong-Qi
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [24] Perturbations of generalized g-frame in Hilbert C*-modules
    Hou, Enran
    Fang, Xiaochun
    Tongji Daxue Xuebao/Journal of Tongji University, 2015, 43 (06): : 932 - 937
  • [25] Continuous g-frame and g-Riesz sequences in Hilbert spaces
    Zhang, Yan
    Li, Yun-Zhang
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (07) : 4257 - 4271
  • [26] DILATIONS OF DUAL g-FRAME GENERATORS FOR AN ABSTRACT WAVELET SYSTEM
    Li, Liang
    Li, Pengtong
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2020, 51 (02): : 589 - 610
  • [27] Dilations of dual g-frame generators for an abstract wavelet system
    Liang Li
    Pengtong Li
    Indian Journal of Pure and Applied Mathematics, 2020, 51 : 589 - 610
  • [28] REPRESENTATIONS OF LINEAR OPERATORS
    FULLERTON, RE
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1947, 53 (11) : 1115 - 1115
  • [29] INTEGRAL REPRESENTATIONS OF LINEAR OPERATORS
    KOROTKOV, VB
    DOKLADY AKADEMII NAUK SSSR, 1971, 198 (04): : 755 - &
  • [30] Joint Similarities and Parameterizations for Dilations of Dual g-frame Pairs in Hilbert Spaces
    Xun Xiang GUO
    Acta Mathematica Sinica,English Series, 2019, (11) : 1827 - 1840