Dynamical phase transitions in periodically driven Bardeen-Cooper-Schrieffer systems

被引:5
|
作者
Collado, H. P. Ojeda [1 ,2 ]
Usaj, Gonzalo [3 ,4 ,5 ]
Balserio, C. A. [3 ,4 ,5 ]
Zanette, Damian H. [3 ,4 ]
Lorenzana, Jose [6 ]
机构
[1] Sapienza Univ Rome, CNR, ISC, Piazzale Aldo Moro 2, I-00185 Rome, Italy
[2] Sapienza Univ Rome, Dept Phys, Piazzale Aldo Moro 2, I-00185 Rome, Italy
[3] Univ Nacl Cuyo UNCUYO, Ctr Atom Bariloche, Comis Nacl Energia Atom CNEA, RA-8400 San Carlos De Bariloche, Argentina
[4] Univ Nacl Cuyo UNCUYO, Inst Balseiro, Comis Nacl Energia Atom CNEA, RA-8400 San Carlos De Bariloche, Argentina
[5] Consejo Nacl Invest Cient & Tecn CONICET, Inst Nanociencia & Nanotecnol INN, CNEA, RA-8400 San Carlos De Bariloche, Argentina
[6] Consejo Nacl Invest Cient & Tecn CONICET, Buenos Aires, Argentina
来源
PHYSICAL REVIEW RESEARCH | 2023年 / 5卷 / 02期
关键词
LIGHT-INDUCED SUPERCONDUCTIVITY; QUANTUM; RESONANCES;
D O I
10.1103/PhysRevResearch.5.023014
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a systematic study of the dynamical phase diagram of a periodically driven BCS system as a function of drive strength and frequency. Three different driving mechanisms are considered and compared: oscillating density of states, oscillating pairing interaction, and oscillating external paring field. We identify the locus in parameter space of parametric resonances and four dynamical phases: Rabi-Higgs, gapless, synchronized Higgs, and time-crystal phases. We demonstrate that the main features of the phase diagram are quite robust to different driving protocols and discuss the order of the transitions. By mapping the BCS problem to a collection of nonlinear and interacting classical oscillators, we shed light on the origin of time-crystal phases and parametric resonances appearing for subgap excitations.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Bardeen-Cooper-Schrieffer approach to electron correlation in the density matrix formalism
    Piris, M.
    Montero, L.A.
    Cruz, N.
    Journal of Chemical Physics, 1997, 107 (01):
  • [42] Negativity and momentum entanglement in Bardeen-Cooper-Schrieffer states at finite temperature
    Chung, Chun Kit
    Law, C. K.
    PHYSICAL REVIEW A, 2008, 78 (03):
  • [43] The uniqueness and approximation of a positive solution of the Bardeen-Cooper-Schrieffer gap equation
    McLeod, JB
    Yang, YS
    JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (09) : 6007 - 6025
  • [44] Self-Consistent Approximations for Superconductivity beyond the Bardeen-Cooper-Schrieffer Theory
    Kita, Takafumi
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2011, 80 (12)
  • [45] Bardeen-Cooper-Schrieffer theory of finite-size superconducting metallic grains
    Garcia-Garcia, Antonio M.
    Urbina, Juan Diego
    Yuzbashyan, Emil A.
    Richter, Klaus
    Altshuler, Boris L.
    PHYSICAL REVIEW LETTERS, 2008, 100 (18)
  • [46] Functional renormalization for the Bardeen-Cooper-Schrieffer to Bose-Einstein condensation crossover
    Scherer, Michael M.
    Floerchinger, Stefan
    Gies, Holger
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2011, 369 (1946): : 2779 - 2799
  • [47] Superconductor superfluid density from the Bardeen-Cooper-Schrieffer/Bose crossover theory
    Chavez, Israel
    Grether, Marcela
    de Llano, Manuel
    SN APPLIED SCIENCES, 2022, 4 (07):
  • [48] THE CRITICAL-TEMPERATURE AND GAP SOLUTION IN THE BARDEEN-COOPER-SCHRIEFFER THEORY OF SUPERCONDUCTIVITY
    DU, Q
    YANG, YS
    LETTERS IN MATHEMATICAL PHYSICS, 1993, 29 (02) : 133 - 150
  • [50] Photonic heat conduction in Josephson-coupled Bardeen-Cooper-Schrieffer superconductors
    Bosisio, R.
    Solinas, P.
    Braggio, A.
    Giazotto, F.
    PHYSICAL REVIEW B, 2016, 93 (14)