Design and modeling of a quasi-zero stiffness isolator for different loads

被引:30
|
作者
Zheng, Yawei [1 ]
Shangguan, Wen-Bin [1 ]
Yin, Zhihong [1 ]
Liu, Xiao-Ang [2 ]
机构
[1] South China Univ Technol, Sch Mech & Automot Engn, Guangzhou, Peoples R China
[2] Hebei Univ Technol, Sch Mech Engn, Tianjin Key Lab Power Transmiss & Safety Technol N, Tianjin, Peoples R China
基金
中国国家自然科学基金;
关键词
Multiple quasi-zero stiffness; Low frequency; Vibration isolation; Piecewise nonlinear; Dynamic stiffness modeling; VIBRATION ISOLATOR; TRANSMISSIBILITY; PERFORMANCE;
D O I
10.1016/j.ymssp.2022.110017
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Most quasi-zero stiffness (QZS) isolators are effective to achieve low-frequency vibration isolation for a certain load but are not capable of achieving effective isolation for other loads. In this paper, an isolator composed of n series-arranged elements is proposed to explore the mechanism of acquiring multiple QZS characteristics. Each element of the proposed isolator exhibits a single QZS characteristic under various specific loads, and thus the proposed isolator shows multiple QZS characteristics under different loads. Then, QZS elements are fabricated using Thermoplastic polyurethanes (TPU). Reacted forces of the proposed isolator under static and harmonic excita-tions are measured. The measurements show that static behavior of the proposed isolator has multiple QZS characteristics, while dynamic behaviors exhibit preload-, amplitude-and frequency-dependent properties. To explore the proposed isolator's properties, three kinds of equivalent mechanical models are proposed. Finally, a single degree of freedom system (DOF) with the proposed isolator is established to investigate its isolation performances theoretically and experimentally. It is found that with the increased layer number, the proposed isolator is effective for achieving low-frequency vibration isolation under various preloads, and this advantage can be enhanced if the damping and excitation are small.
引用
收藏
页数:26
相关论文
共 50 条
  • [21] Dynamic Analysis of Quasi-Zero Stiffness Pneumatic Vibration Isolator
    Ngoc Yen Phuong Vo
    Thanh Danh Le
    APPLIED SCIENCES-BASEL, 2022, 12 (05):
  • [22] Analysis and optimization of a typical quasi-zero stiffness vibration isolator
    Li, Huan
    Yu, Yang
    Li, Jianchun
    Li, Yancheng
    SMART STRUCTURES AND SYSTEMS, 2021, 27 (03) : 525 - 536
  • [23] A vibration isolator with a controllable quasi-zero stiffness region based on nonlinear force design
    Lian, Xinyu
    Liu, Bing
    Deng, Huaxia
    Gong, Xinglong
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2024, 45 (08) : 1279 - 1294
  • [24] The Quasi-Zero Stiffness Seat Vibration Isolator Design to Improve Cockpit Vibration Comfort
    Juncheng Shu
    Erming He
    Yongzhi Li
    Cong Zhang
    Journal of Vibration Engineering & Technologies, 2024, 12 : 5999 - 6014
  • [25] A vibration isolator with a controllable quasi-zero stiffness region based on nonlinear force design
    Xinyu LIAN
    Bing LIU
    Huaxia DENG
    Xinglong GONG
    Applied Mathematics and Mechanics(English Edition), 2024, 45 (08) : 1279 - 1294
  • [26] Design of quasi-zero stiffness compliant shock isolator under strong shock excitation
    Yu, Bin
    Liu, Hua
    Fan, Dapeng
    Xie, Xin
    PRECISION ENGINEERING-JOURNAL OF THE INTERNATIONAL SOCIETIES FOR PRECISION ENGINEERING AND NANOTECHNOLOGY, 2022, 78 : 47 - 59
  • [27] Design and analysis of quasi-zero stiffness torsional vibration isolator adapting to load changes
    Zhang, Chunsong
    Li, Xueyong
    Zhang, Shuo
    Xu, Dingmin
    Zhendong yu Chongji/Journal of Vibration and Shock, 2022, 41 (23): : 307 - 314
  • [28] Dynamic characteristics of a quasi-zero stiffness vibration isolator with nonlinear stiffness and damping
    Yanqi Liu
    Longlong Xu
    Chunfang Song
    Huangsen Gu
    Wen Ji
    Archive of Applied Mechanics, 2019, 89 : 1743 - 1759
  • [29] The Quasi-Zero Stiffness Seat Vibration Isolator Design to Improve Cockpit Vibration Comfort
    Shu, Juncheng
    He, Erming
    Li, Yongzhi
    Zhang, Cong
    JOURNAL OF VIBRATION ENGINEERING & TECHNOLOGIES, 2024, 12 (04) : 5999 - 6014
  • [30] Influences of design parameters on shock isolation performance of integrated quasi-zero stiffness isolator
    Ding, Bosen
    Liu, Haiping
    Zhu, Dongmei
    Guofang Keji Daxue Xuebao/Journal of National University of Defense Technology, 2024, 46 (04): : 159 - 168