Supervised actor-critic reinforcement learning with action feedback for algorithmic trading

被引:2
|
作者
Sun, Qizhou [1 ]
Si, Yain-Whar [1 ]
机构
[1] Univ Macau, Dept Comp & Informat Sci, Ave da Univ, Taipa, Macau, Peoples R China
关键词
Finance; Reinforcement learning; Supervised learning; Algorithmic trading; ENERGY;
D O I
10.1007/s10489-022-04322-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Reinforcement learning is one of the promising approaches for algorithmic trading in financial markets. However, in certain situations, buy or sell orders issued by an algorithmic trading program may not be fulfilled entirely. By considering the actual scenarios from the financial markets, in this paper, we propose a novel framework named Supervised Actor-Critic Reinforcement Learning with Action Feedback (SACRL-AF) for solving this problem. The action feedback mechanism of SACRL-AF notifies the actor about the dealt positions and corrects the transitions of the replay buffer. Meanwhile, the dealt positions are used as the labels for the supervised learning. Recent studies have shown that Deep Deterministic Policy Gradient (DDPG) and Twin Delayed Deep Deterministic Policy Gradient (TD3) are more stable and superior to other actor-critic algorithms. Against this background, based on the proposed SACRL-AF framework, two reinforcement learning algorithms henceforth referred to as Supervised Deep Deterministic Policy Gradient with Action Feedback (SDDPG-AF) and Supervised Twin Delayed Deep Deterministic Policy Gradient with Action Feedback (STD3-AF) are proposed in this paper. Experimental results show that SDDPG-AF and STD3-AF achieve the state-of-art performance in profitability.
引用
收藏
页码:16875 / 16892
页数:18
相关论文
共 50 条
  • [1] Supervised actor-critic reinforcement learning with action feedback for algorithmic trading
    Qizhou Sun
    Yain-Whar Si
    [J]. Applied Intelligence, 2023, 53 : 16875 - 16892
  • [2] Actor-critic reinforcement learning for the feedback control of a swinging chain
    Dengler, C.
    Lohmann, B.
    [J]. IFAC PAPERSONLINE, 2018, 51 (13): : 378 - 383
  • [3] Hybrid Actor-Critic Reinforcement Learning in Parameterized Action Space
    Fan, Zhou
    Su, Rui
    Zhang, Weinan
    Yu, Yong
    [J]. PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 2279 - 2285
  • [4] A World Model for Actor-Critic in Reinforcement Learning
    Panov, A. I.
    Ugadiarov, L. A.
    [J]. PATTERN RECOGNITION AND IMAGE ANALYSIS, 2023, 33 (03) : 467 - 477
  • [5] Actor-Critic based Improper Reinforcement Learning
    Zaki, Mohammadi
    Mohan, Avinash
    Gopalan, Aditya
    Mannor, Shie
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [6] Curious Hierarchical Actor-Critic Reinforcement Learning
    Roeder, Frank
    Eppe, Manfred
    Nguyen, Phuong D. H.
    Wermter, Stefan
    [J]. ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2020, PT II, 2020, 12397 : 408 - 419
  • [7] Integrated Actor-Critic for Deep Reinforcement Learning
    Zheng, Jiaohao
    Kurt, Mehmet Necip
    Wang, Xiaodong
    [J]. ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2021, PT IV, 2021, 12894 : 505 - 518
  • [8] A fuzzy Actor-Critic reinforcement learning network
    Wang, Xue-Song
    Cheng, Yu-Hu
    Yi, Jian-Qiang
    [J]. INFORMATION SCIENCES, 2007, 177 (18) : 3764 - 3781
  • [9] A modified actor-critic reinforcement learning algorithm
    Mustapha, SM
    Lachiver, G
    [J]. 2000 CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING, CONFERENCE PROCEEDINGS, VOLS 1 AND 2: NAVIGATING TO A NEW ERA, 2000, : 605 - 609
  • [10] Research on actor-critic reinforcement learning in RoboCup
    Guo, He
    Liu, Tianying
    Wang, Yuxin
    Chen, Feng
    Fan, Jianming
    [J]. WCICA 2006: SIXTH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-12, CONFERENCE PROCEEDINGS, 2006, : 205 - 205