Reliability-Adaptive Consistency Regularization for Weakly-Supervised Point Cloud Segmentation

被引:4
|
作者
Wu, Zhonghua [1 ]
Wu, Yicheng [2 ]
Lin, Guosheng [1 ]
Cai, Jianfei [2 ]
机构
[1] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore 639798, Singapore
[2] Monash Univ, Dept Data Sci & AI, Melbourne, Vic 3800, Australia
关键词
Weakly supervision; Point cloud; Point cloud segmentation; Uncertainty;
D O I
10.1007/s11263-023-01975-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Weakly-supervised point cloud segmentation with extremely limited labels is highly desirable to alleviate the expensive costs of collecting densely annotated 3D points. This paper explores applying the consistency regularization that is commonly used in weakly-supervised learning, for its point cloud counterpart with multiple data-specific augmentations, which has not been well studied. We observe that the straightforward way of applying consistency constraints to weakly-supervised point cloud segmentation has two major limitations: noisy pseudo labels due to the conventional confidence-based selection and insufficient consistency constraints due to discarding unreliable pseudo labels. Therefore, we propose a novel Reliability-Adaptive Consistency Network (RAC-Net) to use both prediction confidence and model uncertainty to measure the reliability of pseudo labels and apply consistency training on all unlabeled points while with different consistency constraints for different points based on the reliability of corresponding pseudo labels. Experimental results on the S3DIS and ScanNet-v2 benchmark datasets show that our model achieves superior performance in weakly-supervised point cloud segmentation. The code will be released publicly at https://github.com/wu-zhonghua/RAC-Net.
引用
收藏
页码:2276 / 2289
页数:14
相关论文
共 50 条
  • [21] Weakly-Supervised Domain Adaptive Semantic Segmentation with Prototypical Contrastive Learning
    Das, Anurag
    Xian, Yongqin
    Dai, Dengxin
    Schiele, Bernt
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 15434 - 15443
  • [22] HOI-aware Adaptive Network for Weakly-supervised Action Segmentation
    Zhang, Runzhong
    Wang, Suchen
    Duan, Yueqi
    Tang, Yansong
    Zhang, Yue
    Tan, Yap-Peng
    PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 1722 - 1730
  • [23] PPDistiller: Weakly-supervised 3D point cloud semantic segmentation framework via point-to-pixel distillation
    Zhang, Yong
    Wu, Zhaolong
    Lan, Rukai
    Liang, Yingjie
    Liu, Yifan
    KNOWLEDGE-BASED SYSTEMS, 2024, 305
  • [24] On Regularized Losses for Weakly-supervised CNN Segmentation
    Tang, Meng
    Perazzi, Federico
    Djelouah, Abdelaziz
    Ben Ayed, Ismail
    Schroers, Christopher
    Boykov, Yuri
    COMPUTER VISION - ECCV 2018, PT XVI, 2018, 11220 : 524 - 540
  • [25] Weakly-Supervised Audio-Visual Segmentation
    Mo, Shentong
    Raj, Bhiksha
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [26] Weakly-Supervised RGBD Video Object Segmentation
    Yang, Jinyu
    Gao, Mingqi
    Zheng, Feng
    Zhen, Xiantong
    Ji, Rongrong
    Shao, Ling
    Leonardis, Ales
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 2158 - 2170
  • [27] IMPORTANCE SAMPLING CAMS FOR WEAKLY-SUPERVISED SEGMENTATION
    Jonnarth, Arvi
    Felsberg, Michael
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 2639 - 2643
  • [28] Token Contrast for Weakly-Supervised Semantic Segmentation
    Ru, Lixiang
    Zheng, Hehang
    Zhan, Yibing
    Du, Bo
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 3093 - 3102
  • [29] Rethinking CAM in Weakly-Supervised Semantic Segmentation
    Song, Yuqi
    Li, Xiaojie
    Shi, Canghong
    Feng, Shihao
    Wang, Xin
    Luo, Yong
    Xi, Wu
    IEEE ACCESS, 2022, 10 : 126440 - 126450
  • [30] WEAKLY-SUPERVISED PLATE AND FOOD REGION SEGMENTATION
    Shimoda, Wataru
    Yanai, Keiji
    2020 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2020,