Lipschitz regularity for solutions of a general class of elliptic equations

被引:0
|
作者
Marino, Greta [1 ]
Mosconi, Sunra [2 ]
机构
[1] Univ Augsburg, Inst Math, Universitatsstr 12a, D-86159 Augsburg, Germany
[2] Univ Catania, Dept Math & Comp Sci, Viale A Doria 6, I-95125 Catania, Italy
关键词
DEGENERATE; CALCULUS; GRADIENT; BOUNDS;
D O I
10.1007/s00526-023-02632-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove local Lipschitz regularity for local minimisers of We prove local Lipschitz regularity for local minimisers of W-1,W-1 (Omega) (sic) v bar right arrow integral(Omega) F(Dv) dx where Omega subset of R-N, N >= 2 and F : R-N -> R is a quasiuniformly convex integrand in the sense of Kovalev and Maldonado (Ill J Math 49:1039-1060, 2005), i. e. a convex C-1-function such that the ratio between themaximum andminimum eigenvalues of (DF)-F-2 is essentially bounded. This class of integrands includes the standard singular/degenerate functions F(z) = vertical bar z vertical bar(p) for any p > 1 and arises as the closure, with respect to a natural convergence, of the strongly elliptic integrands of the Calculus of Variations.
引用
收藏
页数:40
相关论文
共 50 条