Gradient estimates for the insulated conductivity problem with inclusions of the general m-convex shapes

被引:0
|
作者
Zhao, Zhiwen [1 ,2 ]
机构
[1] Beijing Computat Sci Res Ctr, Beijing, Peoples R China
[2] Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R China
来源
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK | 2023年 / 103卷 / 12期
关键词
ELECTRIC-FIELDS; BLOW-UP; STRESSES; PERFECT; REGULARITY; FIBERS;
D O I
10.1002/zamm.202200324
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the insulated conductivity model with two touching or close-to-touching inclusions is considered in R-d with d >= 3. We establish the pointwise upper bounds on the gradient of the solution for the generalized m-convex inclusions under these two cases with m >= 2, which show that the singular behavior of the gradient in the thin gap between two inclusions is described by the first non-zero eigenvalue of an elliptic operator of divergence form on Sd-2. Finally, the sharpness of the estimates is also proved for two touching axisymmetric insulators, especially including curvilinear cubes.
引用
收藏
页数:24
相关论文
共 36 条
  • [31] General fractional integral inequalities for convex and m-convex functions via an extended generalized Mittag-Leffler function
    Farid, G.
    Khan, K. A.
    Latif, N.
    Rehman, A. U.
    Mehmood, S.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [32] General fractional integral inequalities for convex and m-convex functions via an extended generalized Mittag-Leffler function
    G. Farid
    K. A. Khan
    N. Latif
    A. U. Rehman
    S. Mehmood
    Journal of Inequalities and Applications, 2018
  • [33] INCLUSIONS OF GENERAL SHAPES HAVING CONSTANT FIELD INSIDE THE CORE AND NONELLIPTICAL NEUTRAL COATED INCLUSIONS WITH ANISOTROPIC CONDUCTIVITY
    Lim, Mikyoung
    Milton, Graeme W.
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2020, 80 (03) : 1420 - 1440
  • [34] Optimal gradient estimates for the perfect conductivity problem with C1,α ainclusions
    Chen, Yu
    Li, Haigang
    Xu, Longjuan
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2021, 38 (04): : 953 - 979
  • [35] Some existence results and gradient estimates of solutions of the Dirichlet problem for the constant mean curvature equation in convex domains
    Ripoll, J
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 181 (01) : 230 - 241
  • [36] Mixed-norm estimates for the M/EEG inverse problem using accelerated gradient methods
    Gramfort, Alexandre
    Kowalski, Matthieu
    Haemaelaeinen, Matti
    PHYSICS IN MEDICINE AND BIOLOGY, 2012, 57 (07): : 1937 - 1961