State of charge estimation for lithium-ion batteries based on a novel complex-order model

被引:3
|
作者
Chen, Liping [1 ]
Wu, Xiaobo [1 ]
Lopes, Antonio M. [2 ]
Li, Xin [1 ]
Li, Penghua [3 ]
Wu, Ranchao [4 ]
机构
[1] Hefei Univ Technol, Sch Elect Engn & Automat, Hefei 230009, Peoples R China
[2] Univ Porto, Fac Engn, LAETA, INEGI, Rua Dr, P-4200465 Porto, Portugal
[3] Chongqing Univ Posts & Telecommun, Coll Automat, Chongqing 400065, Peoples R China
[4] Anhui Univ, Sch Math, Hefei 230601, Peoples R China
关键词
Complex -order derivatives; Equivalent circuit model; Particle swarm optimization; Unscented Kalman filter; KALMAN FILTER; OBSERVER; HEALTH;
D O I
10.1016/j.cnsns.2023.107365
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The accuracy of the battery model is decisive in model-based state of charge (SOC) estimation. In this paper, complex-order derivatives (CDs) are applied in the scope of battery modeling, parameter identification, and SOC estimation. Firstly, a novel complexorder equivalent circuit model (Co-ECM) for lithium-ion batteries, which considers an innovative complex-order constant phase element, is proposed. Secondly, the structure characteristics of the Co-ECM are analyzed, and a complex-order particle swarm optimization algorithm is developed to identify the Co-ECM parameters. Finally, a novel complex-order unscented Kalman filter is designed to estimate the battery SOC, while CDs capture the system past behavior and tackle the nonlinearities of the constant phase element. Also, the proposed Co-ECM is compared with two other alternatives (i.e., integer-order and fractional-order ECM) based on data from two battery test cycles at different temperatures. The results show that the new Co-ECM leads to SOC estimation accuracy higher than the traditional models over a wide range of temperature (0 degrees C, 25 degrees C and 45 degrees C), with root-mean-squared error (RMSE) and mean absolute error (MAE) less than 0.47% and 0.41%, respectively. Moreover, experiments with data polluted with artificial noise revealed that the proposed model has superior robustness against noisy information. The new Co-ECM is, thus, shown to be a prime option for battery SOC estimation.& COPY; 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:19
相关论文
共 50 条
  • [31] State-of-charge estimation method for lithium-ion batteries based on competitive SIR model
    Xu, Guimin
    FRONTIERS IN ENERGY RESEARCH, 2022, 10
  • [32] A Physics-Based Equivalent Circuit Model and State of Charge Estimation for Lithium-Ion Batteries
    Li, Yigang
    Qi, Hongzhong
    Shi, Xinglei
    Jian, Qifei
    Lan, Fengchong
    Chen, Jiqing
    ENERGIES, 2024, 17 (15)
  • [33] Improved Parameter Identification for Lithium-Ion Batteries Based on Complex-Order Beetle Swarm Optimization Algorithm
    Zhang, Xiaohua
    Li, Haolin
    Zhang, Wenfeng
    Lopes, Antonio M.
    Wu, Xiaobo
    Chen, Liping
    MICROMACHINES, 2023, 14 (02)
  • [34] State-of-charge estimation for lithium-ion batteries based on incommensurate fractional-order observer
    Chen, Liping
    Guo, Wenliang
    Lopes, Antonio M.
    Wu, Ranchao
    Li, Penghua
    Yin, Lisheng
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 118
  • [35] Adaptive state of charge estimation for lithium-ion batteries based on implementable fractional-order technology
    Li, Shizhong
    Li, Yan
    Zhao, Daduan
    Zhang, Chenghui
    JOURNAL OF ENERGY STORAGE, 2020, 32
  • [36] State of charge and state of health estimation strategies for lithium-ion batteries
    Wang, Nanlan
    Xia, Xiangyang
    Zeng, Xiaoyong
    INTERNATIONAL JOURNAL OF LOW-CARBON TECHNOLOGIES, 2023, 18 : 443 - 448
  • [37] Electrochemical impedance spectroscopy based estimation of the state of charge of lithium-ion batteries
    Westerhoff, U.
    Kroker, T.
    Kurbach, K.
    Kurrat, M.
    JOURNAL OF ENERGY STORAGE, 2016, 8 : 244 - 256
  • [38] Robust and Adaptive Estimation of State of Charge for Lithium-Ion Batteries
    Zhang, Caiping
    Wang, Le Yi
    Li, Xue
    Chen, Wen
    Yin, George G.
    Jiang, Jiuchun
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2015, 62 (08) : 4948 - 4957
  • [39] State of charge estimation for lithium-ion batteries: An adaptive approach
    Fang, Huazhen
    Wang, Yebin
    Sahinoglu, Zafer
    Wada, Toshihiro
    Hara, Satoshi
    CONTROL ENGINEERING PRACTICE, 2014, 25 : 45 - 54
  • [40] Nonlinear adaptive estimation of the state of charge for Lithium-ion batteries
    Wang, Yebin
    Fang, Huazhen
    Sahinoglu, Zafer
    Wada, Toshihiro
    Hara, Satoshi
    2013 IEEE 52ND ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2013, : 4405 - 4410