Classification and Detection of Cognitive Disorders like Depression and Anxiety Utilizing Deep Convolutional Neural Network (CNN) Centered on EEG Signal

被引:4
|
作者
Mohan, Ranjani [1 ]
Perumal, Supraja [2 ]
机构
[1] SRM Inst Sci & Technol, Fac Engn & Technol, Dept Comp Technol, Kattankulathur 603203, Tamil Nadu, India
[2] SRM Inst Sci & Technol, Fac Engn & Technol, Dept Networking & Commun, Kattankulathur 603203, Tamil Nadu, India
关键词
detection; depression; anxiety; EEG signal; CNN; classification; brain; cognitive disorders; NONLINEAR FEATURES; EMOTION;
D O I
10.18280/ts.400313
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Electroencephalography (EEG) is a test performed to assess the electrical signals spontaneously produced during brain activities. In recent years, it is popularly used for studying both normal and pathological changes occurring in the human brain. With the World Health Organization (WHO) listing psychological disorders as a major health issue faced by the modern society, the current work focuses on this niche. It categorizes cognitive impairment like depression and anxiety using a computer-aided machine learning approach called Convolutional Neural Network. The deep CNN is trained using EEG signals from 30 patients suffering from depression and 30 others suffering from anxiety. Initially, the signal is preprocessed using Fractional Order Butterworth Filter (FOBF). The work considers the occurrence of ultra-damped, hyper-damped, and under-damped poles while designing a FOBF in a composite w-plane (w=sq; where, q is a real number). As usually executed for integer order filters in a composite w-plane, the primary initial fractional Butterworth filter is employed. The characteristics of each electrode's gamma, theta, delta, beta, alpha, and full-band EEG are then analyzed. This results in the removal of 270 nonlinear and linear characteristics. The feature space's dimensions are then reduced using a feature selection approach called Minimal-Redundancy-Maximal-Relevance (MRMR). The EEG characteristics are finally categorized by utilizing the suggested deep CNN, Artificial Neural Network (ANN) and K-Nearest Neighbor (KNN). The accuracy of classification of the proposed approach is evaluated and found to be 97.6%. This shows it is promising for detecting depression and anxiety symptoms accurately and cost-effectively.
引用
收藏
页码:971 / 979
页数:9
相关论文
共 50 条
  • [21] Automated Embolic Signal Detection Using Deep Convolutional Neural Network
    Sombune, Praotasna
    Phienphanich, Phongphan
    Phuechpanpaisal, Sutanya
    Muengtaweepongsa, Sombat
    Ruamthanthong, Anuchit
    Tantibundhit, Charturong
    2017 39TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2017, : 3365 - 3368
  • [22] Convolutional neural network with support vector machine for motor imagery EEG signal classification
    Echtioui, Amira
    Zouch, Wassim
    Ghorbel, Mohamed
    Mhiri, Chokri
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (29) : 45891 - 45911
  • [23] Convolutional neural network with support vector machine for motor imagery EEG signal classification
    Amira Echtioui
    Wassim Zouch
    Mohamed Ghorbel
    Chokri Mhiri
    Multimedia Tools and Applications, 2023, 82 : 45891 - 45911
  • [24] Automated EEG-based screening of depression using deep convolutional neural network
    Acharya, U. Rajendra
    Oh, Shu Lih
    Hagiwara, Yuki
    Tan, Jen Hong
    Adeli, Hojjat
    Subha, D. P.
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2018, 161 : 103 - 113
  • [25] SEIZURE DETECTION USING LEAST EEG CHANNELS BY DEEP CONVOLUTIONAL NEURAL NETWORK
    Avcu, Mustafa Talha
    Zhang, Zhuo
    Chan, Derrick Wei Shih
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 1120 - 1124
  • [26] Deep Convolutional Neural Network for Emotion Recognition Using EEG and Peripheral Physiological Signal
    Lin, Wenqian
    Li, Chao
    Sun, Shouqian
    IMAGE AND GRAPHICS (ICIG 2017), PT II, 2017, 10667 : 385 - 394
  • [27] Deep Convolutional Neural Network Regularization for Alcoholism Detection Using EEG Signals
    Mukhtar, Hamid
    Qaisar, Saeed Mian
    Zaguia, Atef
    SENSORS, 2021, 21 (16)
  • [28] Event Detection and Classification Using Deep Compressed Convolutional Neural Network
    Swapnika, K.
    Vasumathi, D.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (12) : 312 - 322
  • [29] Polarimetric SAR Targets Detection and Classification with Deep Convolutional Neural Network
    Chen, Si-Wei
    Tao, Chen-Song
    Wang, Xue-Song
    Xiao, Shun-Ping
    2018 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM (PIERS-TOYAMA), 2018, : 2227 - 2234
  • [30] Event Detection and Classification Using Deep Compressed Convolutional Neural Network
    Swapnika, K.
    Vasumathi, D.
    International Journal of Advanced Computer Science and Applications, 2022, 13 (12): : 312 - 322