Sodium Stoichiometry Tuning of the Biphasic-NaxMnO2 Cathode for High-Performance Sodium-Ion Batteries

被引:9
|
作者
Zhang, Yiming [1 ]
Tang, Dafu [1 ]
Liu, Yuanyuan [1 ]
Wang, Jin [1 ]
Li, Zhipeng [1 ]
Li, Xin [1 ]
Han, Guang [2 ]
Wei, Qiulong [1 ]
Qu, Baihua [2 ]
机构
[1] Xiamen Univ, Pen Tung Sah Inst Micronano Sci & Technol, Coll Mat, Xiamen 361005, Peoples R China
[2] Chongqing Univ, Coll Mat Sci & Engn, Chongqing 400044, Peoples R China
基金
中国国家自然科学基金;
关键词
cathodes; high-power; layered; tunnel; sodium storage mechanism; sodium-ion batteries; TRANSITION-METAL OXIDES; LAYERED OXIDES; NA0.44MNO2; LITHIUM; STORAGE; ENERGY;
D O I
10.1002/smll.202301141
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Sodium-ion batteries (SIBs) are promising alternatives for large-scale energy storage owing to the rich resource and cost effectiveness. However, there are limitations of suitable low-cost, high-rate cathode materials for fast charging and high-power delivery in grid systems. Herein, a biphasic tunnel/layered 0.80Na(0.44)MnO(2)/0.20Na(0.70)MnO(2) (80T/20L) cathode delivering exceptional rate performance through subtly regulating the sodium and manganese stoichiometry is reported. It delivers a reversible capacity of 87 mAh g(-1) at 4 A g(-1) (33 C), much higher than that of tunnel Na0.44MnO2 (72 mAh g(-1)) and layered Na0.70MnO2 (36 mAh g(-1)). It proves that the one-pot synthesized 80T/20L is able to suppress the deactivation of L-Na0.70MnO2 under air-exposure, which improves the specific capacity and cycling stability. Based on electrochemical kinetics analysis, the electrochemical storage of 80T/20L is mainly based on pseudocapacitive surface-controlled process. The thick film of 80T/20L cathode (a single-side mass loading over 10 mg cm(-2)) also has superior properties of pseudocapacitive response (over 83.5% at a low sweep rate of 1 mV s(-1)) and excellent rate performance. In this sense, the 80T/20L cathode with outstanding comprehensive performance could meet the requirements of high-performance SIBs.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Electrochemically grown nanocrystalline V2O5 as high-performance cathode for sodium-ion batteries
    Li, Hui-Ying
    Yang, Cheng-Hsien
    Tseng, Chuan-Ming
    Lee, Sheng-Wei
    Yang, Chun-Chuen
    Wu, Tzi-Yi
    Chang, Jeng-Kuei
    JOURNAL OF POWER SOURCES, 2015, 285 : 418 - 424
  • [42] A study of fabrication and characterization of NaxMnO2 as a cathode material for sodium-ion battery
    Zia Uddin Mahmud
    Subrata Karmakar
    Ariful Haque
    Kartik C. Ghosh
    MRS Advances, 2023, 8 : 828 - 834
  • [43] Layered-tunnel structured cathode for high performance sodium-ion batteries
    Zan, Feng
    Yao, Yao
    Savilov, Serguei, V
    Suslova, Eugenia
    Xia, Hui
    FUNCTIONAL MATERIALS LETTERS, 2020, 13 (04)
  • [44] Recycling of spent lithium-ion batteries to resynthesize high-performance cathode materials for sodium-ion storage
    Gong, Hai-Qiang
    Wang, Xing-Yuan
    Ye, Long
    Zhang, Bao
    Ou, Xing
    TUNGSTEN, 2024, 6 (03) : 574 - 584
  • [45] Recycling of spent lithium-ion batteries to resynthesize high-performance cathode materials for sodium-ion storage
    Hai-Qiang Gong
    Xing-Yuan Wang
    Long Ye
    Bao Zhang
    Xing Ou
    Tungsten, 2024, 6 (03) : 574 - 584
  • [46] Topotactic Syntopogenous Sodium Vanadium Fluoride for High-Performance Sodium-Ion Batteries: Electron and Sodium-Ion Reservoirs in Perovskite/Diperovskite Superlattice
    Guo, Ying
    Li, Kai
    Gong, Yun
    Lin, Jianhua
    NANO LETTERS, 2024, 24 (28) : 8481 - 8486
  • [47] Realizing Complete Solid-Solution Reaction in High Sodium Content P2-Type Cathode for High-Performance Sodium-Ion Batteries
    Jin, Ting
    Wang, Peng-Fei
    Wang, Qin-Chao
    Zhu, Kunjie
    Deng, Tao
    Zhang, Jiaxun
    Zhang, Wei
    Yang, Xiao-Qing
    Jiao, Lifang
    Wang, Chunsheng
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (34) : 14511 - 14516
  • [48] A nanoconfined iron(iii) fluoride cathode in a NaDFOB electrolyte: towards high-performance sodium-ion batteries
    Sun, Zifei
    Fu, Wenbin
    Liu, Michael Z.
    Lu, Peilin
    Zhao, Enbo
    Magasinski, Alexander
    Mengting, Liu
    Luo, Shunrui
    McDaniel, Jesse
    Yushin, Gleb
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (07) : 4091 - 4098
  • [49] Heterogeneous NASICON-Type Cathode With Reversible Multielectron Reaction for High-Performance Sodium-Ion Batteries
    Zhu, Lin
    Xiang, Shuang
    Wang, Miaomiao
    Sun, Dan
    Huang, Xiaobing
    Li, Yixin
    Tang, Yougen
    Peng, Zhiguang
    Zhang, Qi
    Wang, Haiyan
    ADVANCED MATERIALS, 2024,
  • [50] A study of fabrication and characterization of NaxMnO2 as a cathode material for sodium-ion battery
    Mahmud, Zia Uddin
    Karmakar, Subrata
    Haque, Ariful
    Ghosh, Kartik C.
    MRS ADVANCES, 2023, 8 (15) : 828 - 834