Quantum Noise Secured Terahertz Communications

被引:4
|
作者
Zhang, Lu [1 ,2 ]
Deng, Qiuzhuo [1 ,2 ]
Zhang, Hongqi [1 ,2 ]
Yang, Zuomin [1 ,2 ]
Pang, Xiaodan [3 ,4 ]
Bobrovs, Vjaceslavs [5 ]
Popov, Sergei [3 ]
Wu, Yixin [6 ]
Yu, Xiongbin [6 ]
Ozolins, Oskars [3 ,4 ,5 ]
Yu, Xianbin [1 ,2 ]
机构
[1] Zhejiang Univ, Coll Informat Sci & Elect Engn, Hangzhou 310027, Peoples R China
[2] Zhejiang Lab, Hangzhou 311121, Peoples R China
[3] KTH Royal Inst Technol, Appl Phys Dept, S-10691 Stockholm, Sweden
[4] RISE Res Inst Sweden, Networks Unit, S-16440 Kista, Sweden
[5] Riga Tech Univ, Inst Telecommun, LV-1048 Riga, Latvia
[6] Huawei Technol Co Ltd, Inst Strateg Res, Shenzhen 518055, Peoples R China
关键词
Optical mixing; Optical noise; Ciphers; High-speed optical techniques; Optical transmitters; Adaptive optics; Wireless communication; Communication system security; communication system signaling; optical communication; optical signal processing; quantum theory; terahertz radiation; PHYSICAL-LAYER SECURITY; STREAM CIPHER; NETWORKS; Y-00;
D O I
10.1109/JSTQE.2022.3218848
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The terahertz communications display an important role in high-speed wireless communications, the security threat from the eavesdroppers in the terahertz communications has been gaining attention recently. The true randomness in the physical layer can ensure one-time-pad encryption for secured terahertz communications, however, physical layer security schemes like the quantum key distribution methods suffer from device imperfections that limit the desirable signal rate and link distance. Herein, we present the quantum noise secured terahertz wireless communications with photonic terahertz signal generation schemes. With the high-order diffusion algorithms, the signal is masked by the quantum noise ciphers to the eavesdroppers and cannot be detected because the inevitable randomness by quantum noise measurement will cause physical measurement errors. In the experiment, we demonstrate 16 Gbits(-1) quantum noise secured terahertz wireless communications with the conventional optical communication realms and devices, operating at 300 GHz terahertz frequency. This quantum noise secured terahertz communication approach is a significant step toward high-security wireless communications.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] A Survey on Terahertz Communications
    Chen, Zhi
    Ma, Xinying
    Zhang, Bo
    Zhang, Yaxin
    Niu, Zhongqian
    Kuang, Ningyuan
    Chen, Wenjie
    Li, Lingxiang
    Li, Shaoqian
    CHINA COMMUNICATIONS, 2019, 16 (02) : 1 - 35
  • [22] TeraHertz Photonics for Communications
    Seeds, A. J.
    2014 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXHIBITION (OFC), 2014,
  • [23] Terahertz Wireless Communications
    Song, Ho-Jin
    IEEE MICROWAVE MAGAZINE, 2021, 22 (05) : 88 - 99
  • [24] Modulations for Terahertz Band Communications: Joint Analysis of Phase Noise Impact and PAPR Effects
    Parisi, Claire T.
    Badran, Sherif
    Sen, Priyangshu
    Petrov, Vitaly
    Jornet, Josep Miquel
    IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2024, 5 : 412 - 429
  • [25] From Terahertz Imaging to Terahertz Wireless Communications
    Huang, Yi
    Shen, Yaochun
    Wang, Jiayou
    ENGINEERING, 2023, 22 : 106 - 124
  • [26] Advances of Terahertz Research and Terahertz Satellite Communications
    Dong, Shi-Wei
    Zhu, Zhong-bo
    Wang, Ying
    2011 INTERNATIONAL CONFERENCE ON ELECTRONICS, COMMUNICATIONS AND CONTROL (ICECC), 2011, : 4122 - 4125
  • [27] Quantum-noise theory for terahertz hot electron bolometer mixers
    Kollberg, Erik L.
    Yngvesson, K. Sigfrid
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2006, 54 (05) : 2077 - 2089
  • [28] Quantum Secured Internet Transport
    Bernardo A. Hubermann
    Bob Lund
    Jing Wang
    Information Systems Frontiers, 2020, 22 : 1561 - 1567
  • [29] Quantum-secured imaging
    Malik, Mehul
    Magana-Loaiza, Omar S.
    Boyd, Robert W.
    APPLIED PHYSICS LETTERS, 2012, 101 (24)
  • [30] Quantum-secured blockchain
    Kiktenko, E. O.
    Pozhar, N. O.
    Anufriev, M. N.
    Trushechkin, A. S.
    Yunusov, R. R.
    Kurochkin, Y., V
    Lvovsky, A., I
    Fedorov, A. K.
    QUANTUM SCIENCE AND TECHNOLOGY, 2018, 3 (03):